9)tìm x thuộc Z , biết:xy+x+y=0
giúp mk nha,mk chân thành cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{x+2}\inℤ\Leftrightarrow x+5⋮x+2\Leftrightarrow\left(x+5\right)-\left(x+2\right)⋮x+2\)
\(\Leftrightarrow3⋮x+2\Leftrightarrow x+2\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow x\in\left\{-3;-1;-5;1\right\}\)
\(\frac{1}{x}=\frac{y}{-5}\)
\(\Leftrightarrow x\cdot y=1\cdot\left(-5\right)=-5\)
Mà x,y thuộc Z
\(\Rightarrow x\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)
Lập bảng
x | -5 | -1 | 1 | 5 |
y | -1 | -5 | 5 | 1 |
KL | c | c | c | c |
Vậy (x;y)=(-5;-1);(-1;-5);(1;5);(5;1)
x.y-y+2x=5
x(y+2) - y + 2 = 5 + 2
x(y+2) - 1(y+2) = 7
(y+2)(x-1) = 7
=> y+2 và x-1 ∈ Ư(7)
đến đây bạn tự xét bảng là ra!
x(y+2) - y = 5
x(y+2)-y-2+2=5
x(y+2) -(y+2) +2 =5
(x-1)(y+2)=5-2=3
x-1 | 3 | 1 | -1 | -3 |
---|---|---|---|---|
y+2 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | -1 | 1 | -5 | -3 |
\(25-y^2=8\left(x-2015\right)^2\)
\(\Leftrightarrow\left(5-y\right)\left(y+5\right)=8\left(x-2015\right)^2\)
Do vế phải luôn không âm nên: vế trái luôn không ấm.
Tức là: \(-5\le y\le5\).Ta có bảng sau:
y | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
8(x - 2015)2 | \(0\) | 9 | 16 | 21 | 24 | 25 | 24 | 21 | 16 | 9 | 0 |
x | 0 | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | 0 |
Vậy: (x;y) = (0;-5) và (0;5)
xy-x-y=2
=>x(y-1)-y+1=3
=>x(y-1)-(y-1)=3
=>(y-1)(x-1)=3
lập bảng=>tìm x,y
taco
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
..................
x=20
y=30
z=42
Ta có: \(2x^3+5=21\)
\(2x^3=16\)
\(x^3=8\)
\(\Rightarrow x=2\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}=\frac{x+16+y-25}{9+16}=\frac{z+9-x-16}{25-9}=\frac{x+y-9}{25}=\frac{z-x-7}{16}\)
Mà \(x=2\)
\(\Rightarrow\frac{y+2-9}{25}=\frac{z-2-7}{16}=\frac{y-7}{25}=\frac{z-9}{16}=\frac{2+16}{9}=2\)(cái này từ dãy tỉ số trên thay x vào bạn nhé!)
\(\hept{\begin{cases}y-7=2\cdot25=50\\z-9=2\cdot16=32\end{cases}}\)(nhân chéo bạn nhé!)
\(\Leftrightarrow\hept{\begin{cases}y=50+7=57\\z=32+9=41\end{cases}}\)(2)
Thay (1) và (2) vào A, ta được:
\(A=2+57+41+2017\)
\(A=2117\)
Vậy A=2117
Ta có: \(xy+x+y=0\)
<=> \(xy+x+y+1=1\)
<=> \(\left(x+1\right)\left(y+1\right)=1\)(1)
Mà x,y \(\in Z\)=>\(x+1;y+1\in Z\)(2)
Từ (1)(2)=> \(x+1;y+1\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)
Ta có bảng :
Vậy ta tìm được 2 cặp (x;y) thỏa mãn là (0;0);(-2;-2)