K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

(x-1)(x+2)(x+3)(x+6) 
=[(x-1)(x+6)][(x+2)(x+3)] 
=(x^2+5x-6)(x^2+5x+6) 
=(x^2+5x)^2-36>=-36 
=>min=-36<=>x=0 hoặc x=-5

28 tháng 6 2016
(x−1)(x+2)(x+3)(x+6)
=[(x1)(x+6)].[(x+2)(x+3)]
=(x2+5x+6)(x2+5x6)
=(x2+5x)23636
min=36
[x=0x=5
 

 

5 tháng 4 2019

\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)

\(\Leftrightarrow Px^2-2P=2x-1\)

\(\Leftrightarrow Px^2-2x-2P+1=0\)

*Nếu P = 0 thì ....

*Nếu P khác 0 thì pt trên là bậc 2

\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)

Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)

Nên Pmin = -1 

Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn

5 tháng 4 2019

denta ak bạn 

28 tháng 6 2016

(x - 1)(x + 2)(x + 3)(x + 6) = (x -1)(x + 6) (x + 2)(x+3) = (x2 + 5x - 6) (x2 + 5x + 6)

đặt x2 + 5x = t

thay vào được:  (t - 6) (t+ 6) = t2 - 36

có: (x - 1)(x + 2)(x + 3)(x + 6) = t2 - 36 = (x2 + 5x)2 - 36

Vậy giá trị nhỏ nhất của biểu thức là -36

16 tháng 8 2016

khó hiểu quá 

16 tháng 8 2016

bn giải giúp mình đi

20 tháng 5 2018

\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow\text{MIN}_{-36}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

14 tháng 5 2017

P(x^2+x+1)=x^2-x+1

=>Px^2+Px+P-x^2+x-1=0

=>(Px^2-x^2)+(Px+x)+(P-1)=0

=>x^2(P-1)+x(P+1)+(P-1)=0 (1) 

coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm

Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3

=(P-3)(1-3P)  >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3  

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

11 tháng 7 2017

Ta có : D = (x - 1).(x + 3).(x + 2).(x + 6)

=> D = [(x - 1)(x + 6)].[(x + 3).(x + 2)]

=> D = (x2 + 5x - 6) . (x2 + 5x + 6)

=> D = (x2 + 5x)2 - 36

=> D = [x(x + 5)]2 - 36

Mà : [x(x + 5)]​2  \(\ge0\forall x\)

Suy ra : D = [x(x + 5)]​2 - 36 \(\ge-36\forall x\)

Vậy Dmin = -36 , dấu "=" xẩy ra khi và chỉ khi x = 0 hoặc -5