cho tam giác ABC có C =2B=4A.CMR : \(\frac{1}{a}=\frac{1}{b}+\frac{1}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
\(\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}=\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}\)
áp dụng bđt cô si ta có:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{4}{c+a-b+a+b-c}=\frac{4}{2a}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow\frac{1}{m-2a}+\frac{1}{m-2b}+\frac{1}{m-2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c
do AD//CM nên \(\frac{AD}{CM}=\frac{BA}{BM}=\frac{c}{b+c}\)
mà \(CM< AM+AC=2b=>\frac{c}{bc}>\frac{AD}{2b}=>\frac{1}{l_a}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(1\right)\)
tương tự ta có
\(\hept{\begin{cases}\frac{1}{l_b}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\left(2\right)\\\frac{1}{l_c}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\left(3\right)\end{cases}}\)
cộng (1) (2) (3) zế zới zế ta được đpcm
Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi x=y=z
Với x=y=z thì a=b=c => tam giác ABC đều
Cách khác :
Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)
Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)
Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy tam giác ABC đều.
Bài này hình như trong sách nào mà t quên ròi, ai nhớ nhắc với
Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi
ta có : A+C+B=\(_{\pi}\) \(\Rightarrow\) A+2A+4A=\(\pi\) \(\Rightarrow\) A=\(\frac{\pi}{7}\) ,B=\(\frac{2\pi}{7}\),C=\(\frac{4\pi}{7}\)
Do đó : \(\frac{1}{a}=\frac{1}{b}+\frac{1}{c}\Rightarrow\) BC=AB+AC
\(\Leftrightarrow\sin\frac{2\pi}{7}\sin\frac{4\pi}{7}=\sin\frac{\pi}{7}\sin\frac{2\pi}{7}+\sin\frac{\pi}{7}\sin\frac{4\pi}{7}\)
\(\Leftrightarrow\cos\frac{2\pi}{7}-\cos\frac{6\pi}{7}=\cos\frac{\pi}{7}-\cos\frac{3\pi}{7}+\cos\frac{3\pi}{7}-\cos\frac{5\pi}{7}\)
\(\Leftrightarrow\cos\frac{2\pi}{7}-\cos\frac{6\pi}{7}=\cos\frac{\pi}{7}-\cos\frac{5\pi}{7}\) (điều hiển nhiên)