K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

\(9^8.2^8-\left(184-1\right)\left(184+1\right)=18^8-\left(184^2-1\right)=18^8-184^2+1\)

\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\cdot...\left(1+\dfrac{1}{2499}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot...\cdot\dfrac{2500}{2499}\)

\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{50\cdot50}{49\cdot51}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\dfrac{2\cdot3\cdot...\cdot50}{3\cdot4\cdot...\cdot51}\)

\(=\dfrac{50}{1}\cdot\dfrac{2}{51}=\dfrac{100}{51}\)

25 tháng 8 2017

   \(\frac{8^5.\left(-5\right)^8+\left(-2\right)^5.10^9}{2^{16}.5^7+20^8}\)

\(=\frac{\left(2^3\right)^5.5^8+\left(-2\right)^5.\left(2.5\right)^9}{2^{16}.5^7+\left(2^2.5\right)^8}\)

\(=\frac{2^{15}.5^8+\left(-2\right)^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)

\(=\frac{2^{15}.5^8-2^{14}.5^9}{2^{16}.5^7\left(1+5\right)}\)

\(=\frac{2^{14}.5^8\left(2-5\right)}{2^{16}.5^7.\left(1+5\right)}\)

\(=\frac{2^{14}.5^8.\left(-3\right)}{2^{16}.5^7.6}\)

\(=\frac{-5}{8}\)

2 tháng 7 2017

= x^2+16x+64-2x^2-16x+6

=70 - x^2

11 tháng 9 2016

\(A=\left(1+\frac{1}{3}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)

\(A=\frac{3+1}{3}.\frac{8+1}{8}.\frac{15+1}{15}...\frac{n^2+2n+1}{n^2+2n}\)

\(A=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{\left(n+1\right)^2}{n^2+2n}\)

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(A=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)

\(A=\left(n+1\right).\frac{2}{n+2}=\frac{2.\left(n+1\right)}{n+2}\)

11 tháng 9 2016

Ta có : \(1+\frac{1}{k^2+2k}=\frac{k^2+2k+1}{k^2+2k}=\frac{\left(k+1\right)^2}{k\left(k+2\right)}\) với k thuộc N*

Áp dụng với k = 1,2,3,....,n được : 

\(A=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n^2+2n}\right)\)

\(=\frac{\left(1+1\right)^2}{1.\left(1+2\right)}.\frac{\left(2+1\right)^2}{2.\left(2+2\right)}.\frac{\left(3+1\right)^2}{3.\left(3+2\right)}...\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\)

\(=\frac{\left[2.3.4...\left(n+1\right)\right]^2}{1.2.3...n.3.4.5...\left(n+2\right)}=\frac{\left[\left(n+1\right)!\right]^2}{n!.\frac{\left(n+2\right)!}{2}}\)

30 tháng 7 2018

\(P=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=\frac{5^{32}-1}{2}\)

18 tháng 12 2016

2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)(2^16+1)

=2^32-1

12 tháng 12 2017

2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1

chúc bn hok tốt @_@

9 tháng 3 2022

chịu

4 tháng 8 2016

[Toán 8] Rút gọn $ (3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam