K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

\(A=x^2+4x+8=x^2+4x+4+4=\left(x+2\right)^2+4\ge4>0\forall x\)

Vậy biểu thức A luôn dương 

\(=\left(x+2\right)^2+4\ge4\)Dấu ''='' xảy ra khi x = -2

Vậy GTNN A là 4 khi x =-2

\(B=4x^2+2x+1=\left(2x\right)^2+2.2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Vậy biểu thức B luôn dương 

\(=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)Dấu ''='' xảy ra khi x = -1/4 

Vậy GTNN B là 3/4 khi x = 1/4 

4 tháng 9 2018

Thay x=2 zô xem, ra số âm

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

12 tháng 4 2017

Bài 1: \(A=x^2-2x+3\)

\(=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2\ge2\forall x\)

Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

Bài 2:

\(2x^2+4x+11=2x^2+4x+2+9\)

\(=2\left(x^2+2x+1\right)+9\)

\(=2\left(x+1\right)^2+9\ge9>0\forall x\)

10 tháng 7 2018

Bài 1:

           \(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)

Vậy  \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)

        \(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)

Vậy  \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)

        \(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)

Vậy  \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)

Bài 3:

a)   \(x^2+12x+39=\left(x+6\right)^2+3>0\) 

b)   \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)

28 tháng 5 2017

 ban nao giup minh vs mjnh vs

28 tháng 5 2017

1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)

2. 5(2x - 1)2 - 3(2x - 1) = 0

<=> (2x - 1).[5(2x - 1) - 3] = 0

<=> (2x - 1).(10x - 8) = 0

<=> (2x - 1) = 0 hoặc (10x - 8) = 0

<=> x = 1/2 hoặc x = 4/5

3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3

Do: (x - 2)2 > hoặc = 0 (với mọi x)

Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)

Hay (x - 2)2 + 3 > 0 (với mọi x)  => đpcm

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

16 tháng 8 2019

1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4

Ta luôn có: -(x - 3/2)2 \(\le\)\(\forall\)x

=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Max của 3x - x2 là 9/4 tại x = 3/2

2) Ta có : -(x2 + y2) + x + 3y+  10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2

Ta luôn có: -(x - 1/2)2 \(\le\)\(\forall\)x

           -(y - 3/2)2 \(\le\)\(\forall\)y

=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy ...