K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

 

a) A = x^2 -6x +5

=x2-6x+9-4

=(x-3)2-4\(\ge\)-4

Dấu "=" xảy ra khi: x=3

Vậy GTNN của A là -4 tại x=3

b)B=x2+8x+12=x2+8x+16-4=(x+4)2-4\(\ge\)-4

Dấu "=" xảy ra khi : x=-4

Vậy GTLN của B là -4 tại x=-4

c) x2-5x+2=\(x^2-2.x.\frac{5}{2}+\frac{25}{4}-\frac{17}{4}=\left(x-\frac{5}{2}\right)^2\ge-\frac{17}{4}\)

 Dấu "=" xảy ra khi: x=5/2

Vậy GTNN của C là -17/4 tại x=5/2

15 tháng 6 2016

cái này cũng ko có j sai mà ad tick  xíu đi -_-

29 tháng 5 2016

a/ 
A=5x-x^2 =-(x^2-5x) = -[(x-5/2)^2 -25/4] = -(x-5/2)^2 +25/4 <= 25/4 

Vậy giá trị lớn nhất là 25/4 khi x=5/2 

b/ B=x-x^2 = -(x^2-x) = -[(x-1/2)^2 -1/4] =-(x-1/2)^2 +1/4 <= 1/4 

Vậy giá trị lớn nhất là 1/4 khi x=1/2 

c/4x-x^2+3 =-(x^2-4x+3) = -[(x-2)^2 -1] =-(x-2)^2 +1 <= 1 
Vậy lớn nhất là 1 khi x=2 

d/-x^2 +6x-11 = -[x^2-6x+11) = -[(x-3)^2 +2] =-(x-3)^2 -2 <= -2 
Vậy lớn nhất là bằng -2 khi x=3 

e/ 5-8x-x^2 =-(x^2 +8x-5) = -[(x+4)^2 -21] = -(x+4)^2 +21 <=21 
Vay lớn nhất là 21 khi x=-4 

f: 4x-x^2+1=-(x^2-4x-1) =-[(x-2)^2 -5] = -(x-2)^2 +5 <= 5 
Vậy lớn nhất bằng 5 khi x=2

29 tháng 5 2016

chờ tí nhé 

22 tháng 5 2017

Bài 5:

a/A = x2 - 6x + 10 = x2 - 6x + 9 + 1 = ( x - 3 )2 +1

Vì ( x - 3 )2  \(\ge\)0  nên ( x - 3 )2 + 1 \(\ge\)1

Giá trị nhỏ nhất của A là 1

b/ B = x ( x + 6 ) = x2 + 6x + 9 - 9 = ( x + 3 )2 - 9 

Vì ( x + 3 )\(\ge\)0  nên ( x + 3 ) - 9\(\ge\)- 9

Giá trị nhỏ nhất của B là - 9

22 tháng 5 2017

5  -  A\(=x^2-6x+10\)

     A\(=x^2-3x-3x+9+1\)

    A\(=x\left(x-3\right)-3\left(x-3\right)+1\)

    A\(=\left(x-3\right)\left(x-3\right)+1\)

    A\(=\left(x-3\right)^2+1\)

Vì \(^{\left(x-3\right)^2\ge0\forall x}\)

\(\rightarrow\left(x-3\right)^2+1\ge1\forall x\)

Hay A\(\ge1\forall x\)

Dấu '' = '' xảy ra\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

B\(=x\left(x+6\right)\)

B\(=x^2+6x\)

B\(=x\left(x+3\right)+3\left(x+3\right)-9\)

B\(=\left(x+3\right)\left(x+3\right)-9\)

B\(=\left(x+3\right)^2-9\)

\(\left(x+3\right)^2\ge0\forall x\)

\(\rightarrow\left(x+3\right)^2-9\ge-9\forall x\)

Hay B\(\ge-9\forall x\)

Dấu ''='' xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

27 tháng 12 2021

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

14 tháng 9 2018

a) 

\(A=5x-x^2\)

\(A=-x^2+5x\)

\(A=-\left(x^2-5x\right)\)

\(A=-\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right)\)

\(A=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)

\(A=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

\(A=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\)

mà mũ chẵn luôn >= 0

\(\Rightarrow A\le\frac{25}{4}\)

Dấu '=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy,.........

14 tháng 9 2018

b) 

\(B=x-x^2\)

\(B=-x^2+x\)

\(B=-\left(x^2-x\right)\)

\(B=-\left(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(B=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

\(B=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\)

mà ( x - 1/2 )2 luôn lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow B\le\frac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy,..........

17 tháng 10 2018

Đề phải là tìm Min mới đúng nhé!

\(A=6x-x^2+1=-x^2+6x+1=\left(-x^2+6x+9\right)-8\)

Đặt \(K=\left(-x^2+6x+9\right)\) .Để A đạt GTNN thì K nhỏ nhất:

ta có: \(K=\left(-x^2+6x+9\right)=-3\left(-\frac{1}{3}x^2-2x-3\right)\ge0\) (1)

Từ (1) ta có: \(A=K-8\ge-8\)

Dấu "=" xảy ra khi \(\left(-\frac{1}{3}x^2-2x-3\right)=0\Leftrightarrow x=-3\) 

Vậy \(A_{min}=-8\Leftrightarrow x=-3\)

Mấy bài kia làm tương tự

14 tháng 8 2019

tthKo bt thì đg làm nhé

\(A=6x-x^2+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left[\left(x-3\right)^2\right]+10\le10\)

Vậy GTLN của A là 10\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

13 tháng 7 2021

cau A thay = bằng cộng ạ

 

29 tháng 7 2016

\(A=5x-x^2=-\left(x^2-5x\right)=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{5}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\left(x\in R\right)\)

Vậy  \(Max_A=\frac{25}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}^2\right)+\frac{1}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(x\in R\right)\)

Vậy \(Max_B=\frac{1}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

\(C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2-7\right)=-\left(x-2\right)^2+7\)

Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-2\right)^2+7\le7\left(x\in R\right)\)

Vậy \(Max_C=7\)khi \(x-2=0\Leftrightarrow x=2\)

\(D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+3^2+2\right)=-\left(x-3^2\right)-2\)

Vì \(\left(x-3\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-3\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-3\right)^2-2\le-2\left(x\in R\right)\)

Vậy \(Max_D=-2\)khi \(x-3=0\Leftrightarrow x=3\)

\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-21\right)=-\left(x+4\right)^2+21\)

Vì \(\left(x+4\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+4\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+4\right)^2+21\le21\left(x\in R\right)\)

Vậy \(Max_E=21\)khi \(x+4=0\Leftrightarrow x=-4\)

F= \(4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+2^2-5\right)=-\left(x-2\right)^2+5\)

Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-2\right)^2+5\le5\left(x\in R\right)\)

Vậy \(Max_F=5\)khi \(x-2=0\Leftrightarrow x=2\)

29 tháng 7 2016

thankyou so much

what can i help you ?

i will help if i can 

21 tháng 10 2023

loading...  loading...  loading...