Tính
a) (3 + xy2 ) 2
b) ( 10 - 2m2n)2
c) ( a - b2 ) . (a+b2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a,`
`(2x - 3)^2`
`= 4x^2 - 12x + 9`
`b,`
`(x + 1)^2`
`= x^2 + 2x + 1`
`c,`
`(2x + 5)(2x - 5)`
`= 4x^2 - 25`
`d,`
`(a + b - c)(a - b + c)`
`= a^2 - b^2 + bc - c^2 + cb`
`e,`
\((x + 1)^2 - 10(x + 1) + 25\)
`= x^2 + 2x + 1 - 10x - 10 + 25`
`= x^2 - 8x +16`
`@` `\text {Kaizuu lv uuu}`
`@` CT:
Bình phương của `1` tổng: `(A + B)^2 = A^2 + 2AB + B^2`
Bình phương của `1` hiệu: `(A - B)^2 = A^2 - 2AB + B^2`
`A^2 - B^2 = (A-B)(A+B)`
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)
B1/ Sửa đề chút nha, bạn ghi sai đề rồi. Đề đúng là như này
\(a^3+b^3+a^2c+b^2c-abc\)
\(=a^3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a\)
\(=\left(a^3+a^2b+a^2c\right)+\left(b^2c+b^2a+b^3\right)-\left(a^2b+abc+b^2a\right)\)
\(=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)-ab\left(a+b+c\right)\)
Thay a + b +c = 0 vào ta được
\(a^2\left(a+b+c\right)+b^2\left(a+b+c\right)-ab\left(a+b+c\right)\)
\(=a^2.0+b^2.0-ab.0\)
\(=0\)
Vậy với a + b + c = 0 thì a3 + b3 + a2c + b2c - abc = 0
B2/
a) \(x+xy+y+2=0\)
\(\Leftrightarrow x\left(1+y\right)=-\left(y+2\right)\left(1\right)\)
Nếu y = -1 => 0 = -1 ( Loại )
Nếu y ≠ -1 thì (*)↔ x = - [(y + 1) + 1]/(y + 1)
hay x = - 1 - 1/(y+1)
Để x nguyên thì 1/(y+1) phải nguyên →y = 0 hay y =-2(y+1) là Ư(1) = {- 1 , 1}
y = 0 => x = - 2
y =-2 => x = 0
Nghiệm nguyên của phương trình là :
(x; y)∈ { ( -2; 0) , ( 0; -2) }
b) x+y = xy
<=> x(y-1) = y
<=> x = y/(y-1)= 1+1/(y-1)
Vì x là số nguyên nên 1/(y-1) là số nguyên
=> 1 chia hết cho y-1
=> y-1 là ước của 1
=> y-1=1 hoặc y-1=-1
=> y=2 hoặc y=0
Với y=2 => x=2
Với y=0=> x=0
Nghiệm nguyên phương trình là:
(x; y)∈ { ( 2; 2) , ( 0; 0) }
k bn ah, đề 1 cô giáo mk cho đó
khó wa giúp mk nhá, t3 cần òy
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
a) (3+xy2)2
=32+2.3.xy2+(xy2)2
=9+6xy2+x2y4
Vậy ...
b) (10−2m2n)2
=102−2.10.2m2n+(2m2n)2
=100−40m2n+4m4n2
Vậy ...
c) (a−b2)(a+b2)
=a2−(b2)2
=a2−b4
Vậy ...