K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

29 tháng 11 2018

Đáp án B

Áp dụng bất đẳng thức giá trị tuyệt đối và bất đẳng thức BCS, ta có kết quả sau:

2 a + b - 2 c + 7 = 2 a + 1 + b - 2 - 2 c + 11 ≤ 2 a - 1 + b - 2 - 2 c + 11 ≤ a - 1 2 + b - 2 2 + c 2 2 2 + 1 2 + - 2 2 + 11 = 20

Cách 2: phương pháp hình học.

Trong không gian Oxyz, gọi mặt cầu (S) có tâm I(1;2;0), bán kính R=3. Khi đó:

Bài toán đã cho trở thành:

Tìm  M ∈ ( S )  sao cho d(M;(P)) lớn nhất

Gọi △  là đường thẳng qua I và vuông góc (P)

Phân tích: Khi quan sát 2 cách giải, đối với giáo viên ta sẽ dễ chọn Cách 1 vì ngắn gọn và tiết kiệm thời gian. Tuy nhiên học sinh không nhiều em đã từng được tiếp cận bất đẳng thức BCS. Đối với Cách 2, về mặt trình bày có thể dài hơi, nhiều tính toán hơn nhưng đó chỉ là những bước tính toán khá cơ bản, một học sinh khá nếu nhận ra ý đồ tác giả thì việc giải bài toán cũng không mất quá nhiều thời gian. Bài toán sẽ dễ hơn nếu đề bài chỉ yêu cầu tìm Min hoặc Max của biểu thức  2 a + b - 2 c + 7

 

 

18 tháng 4 2016

 Ta có : \(\sqrt{\frac{ab}{ab+2c}}=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{a}{a+c}+\frac{b}{b+c}\)

Tương tự ta cũng có 

           \(\sqrt{\frac{bc}{bc+2a}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{c}{c+a}\right);\sqrt{\frac{ca}{ca+2b}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{a}{a+b}\right)\)

Cộng các vế ta được \(S\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{2}{3}\)

Vậy \(S_{max}=\frac{3}{2}\Leftrightarrow x=y=z=\frac{2}{3}\)

NV
25 tháng 10 2021

a. Đề bài em ghi sai thì phải

Vì:

\(x+y=2\left(\sqrt{x-3}+\sqrt{y-3}\right)\)

\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-2\sqrt{y-3}+1\right)+4=0\)

\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+4=0\) (vô lý)

NV
25 tháng 10 2021

b.

Xét hàm \(f\left(x\right)=x^3+ax^2+bx+c\)

Hàm đã cho là hàm đa thức nên liên tục trên mọi khoảng trên R

Hàm bậc 3 nên có tối đa 3 nghiệm

\(f\left(-2\right)=-8+4a-2b+c>0\)

\(f\left(2\right)=8+4a+2b+c< 0\)

\(\Rightarrow f\left(-2\right).f\left(2\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (-2;2)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=x^3\left(1+\dfrac{a}{x}+\dfrac{b}{x^2}+\dfrac{c}{x^3}\right)=+\infty.\left(1+0+0+0\right)=+\infty\)

\(\Rightarrow\) Luôn tồn tại 1 số thực dương n đủ lớn sao cho \(f\left(n\right)>0\)

\(\Rightarrow f\left(2\right).f\left(n\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(2;n\right)\) hay \(\left(2;+\infty\right)\)

Tương tự \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=-\infty\Rightarrow f\left(-2\right).f\left(m\right)< 0\Rightarrow f\left(x\right)\) luôn  có ít nhất 1 nghiệm thuộc \(\left(-\infty;-2\right)\)

\(\Rightarrow f\left(x\right)\) có đúng 3 nghiệm pb \(\Rightarrow\) hàm cắt Ox tại 3 điểm pb

24 tháng 1 2017

Đáp án đúng : B

 

5 tháng 3 2018

Chọn C

Gọi A (d; e; f) thì A thuộc mặt cầu (S1): (x - 1)+ (y - 2)+ (z- 3)= 1 có tâm I= (1; 2; 3)bán kính R= 1

B (a; b; c) thì B thuộc mặt cầu (S2): (x - 3)+ (y - 2)+ z= 9 có tâm I= (-3; 2; 0), bán kính R= 3

Ta có I1I2 = 5 > R+ R=> (S1và (S2) không cắt nhau và ở ngoài nhau. 

Dễ thấy F = AB, AB max khi ≡ A1; B ≡ B1

=> Giá trị lớn nhất bằng I1I2 + R+ R= 9.

AB min khi ≡ A2; B ≡ B2 

=> Giá trị nhỏ nhất bằng I1I2 - R- R= 1.

Vậy M - m =8

12 tháng 12 2017

Đáp án C.