K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2016

Ta có: P(-1).P(-2)=[a.(-1)2+b.(-1)+c].[a.(-2)2+b.(-2)+c]

=(a-b+c).(4a-2b+c)

=[(5a-4a)-(3b-2b)+(2c-c)].(4a-2b+c)

=(5a-4a-3b+2b+2c-c).(4a-2b+c)

=[(5a-3b+2c)-(4a-2b+c)].(4a-2b+c)

Vì 5a-3b+2c=0

=>P(-1).P(-2)=[0-(4a-2b+c)].(4a-2b+c)

=-(4a-2b+c).(2a-2b+c)

=-(4a-2b+c)2 

Vì \(\left(4a-2b+c\right)^2\ge0\)

=>\(-\left(4a-2b+c\right)^2\le0\)

=>\(P\left(-1\right).P\left(-2\right)\le0\)

=>ĐPCM

12 tháng 6 2016

Hỏi đáp Toán

31 tháng 3 2017

a) Vừa nhìn đề biết ngay sai

Sửa đề:

Chứng minh: \(P\left(-1\right).P\left(-2\right)\le0\)

Giải:

Ta có:

\(P\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P\left(-1\right)=a-b+c\\P\left(-2\right)=4a-2b+c\end{matrix}\right.\)

\(\Rightarrow P\left(-1\right)+P\left(-2\right)=\left(a-b+c\right)+\left(4a-2b+c\right)\)

\(=\left(a+4a\right)-\left(b+2b\right)+\left(c+c\right)\)

\(=5a-3b+2c=0\)

\(\Rightarrow P\left(-1\right)=-P\left(-2\right)\)

\(\Rightarrow P\left(-1\right).P\left(-2\right)=-P^2\left(-2\right)\le0\)\(P^2\left(-2\right)\ge0\)

Vậy nếu \(5a-3b+2c=0\) thì \(P\left(-1\right).P\left(-2\right)\le0\)

b) Giải:

Từ giả thiết suy ra:

\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Ta có:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Lại có:

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\) (Đpcm)

31 tháng 3 2017

a) Có P(1) = a.\(1^2\)+b.1+c = a+b+c

P(2) = a.\(2^2\)+b.2+c = 4a+2b+c

=>P(1)+P(2) = a+b+c+4a+2b+c = 5a+3b+2c = 0

<=>\(\left[{}\begin{matrix}P\left(1\right)=P\left(2\right)=0\\P\left(1\right)=-P\left(2\right)\end{matrix}\right.\)

Nếu P(1) = P(2) => P(1).P(2) = 0

Nếu P(1) = -P(2) => P(1).P(2) < 0

Vậy P(1).P(2)\(\le\)0

b) Từ \(b^2=ac\) =>\(\dfrac{a}{b}=\dfrac{b}{c}\) (1)

\(c^2=bd\) =>\(\dfrac{b}{c}=\dfrac{c}{d}\) (2)

Từ (1) và (2) => \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có

NV
30 tháng 3 2021

\(P\left(2\right)=4a+2b+c=2\left(5a+b+2c\right)-6a-3c=-6a-3c\)

\(P\left(-1\right)=a-b+c=-\left(5a+b+2c\right)+6a+3c\)

\(\Rightarrow P\left(2\right).P\left(-1\right)=\left(-6a-3c\right)\left(6a+3c\right)=-\left(6a+3c\right)^2\le0\) (đpcm)

29 tháng 1 2023

hehe

10 tháng 6 2017

a)có f(-1)=a-b+c

f(2)=4a+2b+c

=>f(-1)+ f(2)=5a+b+2c=0

=>-f(-1)=f(2)

=>f(-1).f(2)=f(-1).-f(-1)=-(f(x))2\(\le\)0

20 tháng 3 2018

1) viết các đơn thức có cả 2 biến x,y có hệ số là 2016 và có bậc là 3

trả lời:

2016x2y

2016xy2

học tốt!!!

21 tháng 3 2018

1,trả lời

2016x2y

2016xy2

\(H\left(-1\right)=a-b+c\)        (1)

\(H\left(-2\right)=4a-2b+c\)        (2)

Lấy (1) + (2) vế theo vế được

\(H\left(-1\right)+H\left(-2\right)=5a-3b+2c=0\)

Suy ra    \(H\left(-1\right)=H\left(-2\right)=0\Rightarrow H\left(-1\right).H\left(-2\right)=0\)

Hoặc \(H\left(-1\right)\)\(H\left(-2\right)\)có 1 số âm và một số dương   

\(\Rightarrow H\left(-1\right).H\left(-2\right)<0\)

Vậy      \(H\left(-1\right).H\left(-2\right)\le0\)