59/10 chia 3/2 -[7/3.9/2-2*7/3]
Bí quá đi ak .Ai giúp tớ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`3/(-10) ; 1/(-2) ; 4/(-5)=> -3/10 ; -1/2 ; -4/5`
ta có : `-1/2=(-1xx5)/(2xx5)=-5/10 ; -4/5=(-4xx2)/(5xx2)=-8/10`
vậy `3/(-10) < 1/(-2) < 4/(-5)`
`--------------------`
`2/(-10) ; 7/(-5) ; -1/2=>-2/10 ;-7/5;-1/2`
ta có : `-7/5=(-7xx2)/(5xx2)=-14/10; -1/2=(-1xx5)/(2xx5)=-5/10`
vậy `2/(-10) < -1/2 < 7/(-5)`
`---------------------`
`7/(-4) ; -2/5 ; -3/10=> -7/4;-2/5;-3/10`
ta có : `-7/4=(-7xx5)/(4xx5)=-35/20 ; -2/5=(-2xx4)/(5xx4)=-8/20;-3/10=(-3xx2)/(10xx2)=-6/20`
vậy 7/(-4) > -2/5 > -3/10`
\(\text{ nhìn thì thiệt là rắc rối nhưng bạn chỉ để ý 1chút là được thui.}\)
\(\text{M=1.chi tiết cách giải nha: }\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)vì\left(a+b=1\right)\)
\(M=a^3+b^3+\left(3ab\left(a^2+b^2\right)+6a^2b^2\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2+2ab\right)\)
\(M=a^3+b^3+3ab\left(a+b\right)^2\)
\(M=\left(a^3+b^3\right)+3ab\)
\(M=\left(a+b\right)\left(a^2-2ab+b^2\right)+3ab\)
\(M=a^2-ab+b^2+3ab\)
\(M=a^2+b^2+2ab=\left(a+b\right)^2=1^2=1\)
a) (3x - 72) . 59 = 4.510
=> 3x - 49 = 4.5
=> 3x - 49 = 20
=> 3x = 69
=> x = 23
Vậy x = 23
b) 210 < 7x < 280
=> 30 < x < 40
mà x \(\inℕ\)
=> \(x\in\left\{31;32;33;34;35;36;37;38;39\right\}\)
c) x + 2 \(⋮\)x - 1
=> x - 1 + 3 \(⋮\)x - 1
Nhận thấy x - 1 \(⋮\)x - 1
=> 3 \(⋮\)x - 1
=> x - 1 \(\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{1;0;4;-2\right\}\)
mà x \(\inℕ\Rightarrow x\in\left\{1;0;4\right\}\)
d) 2x + 7 \(⋮\)x + 1
=> 2(x + 1) + 5 \(⋮\)x + 1
Nhận thấy 2(x + 1) \(⋮\)x + 1
=> 5 \(⋮\)x + 1
=> x + 1 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
=> \(x\in\left\{0;4\right\}\)(vì x là số tự nhiên)
b) 210 < 7x < 280
\(\Rightarrow\)7x\(\in\){ 211; 212; 213; .................; 279 }
Vì cứ cách 7 đơn vị thì có 1 số chia hết cho 7
\(\Rightarrow\)7x = 217; 224; 231; 238; 245; 252; 259; 266; 273
( Còn đâu x bạn tự tính nhé )
\(A=2+2^2+2^3+2^4+...+2^7+2^8+2^9+2^{10}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=1.\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^8.\left(2+2^2\right)\)
\(A=1.6+2^2.6+...+2^8.6\)
\(A=6\left(1+2^2+...+2^8\right)\)
Mà \(6⋮3\Rightarrow6.\left(1+2^2+...+2^8\right)\)
\(\Rightarrow A⋮3\)
NHỚ **** nhé!!!
A = ( 2 + 2^2 ) + ( 2 ^ 3 + 2 ^ 4 ) + ( 2 ^ 5 + 2 ^ 6 ) + .......+ ( 2 ^ 9 + 2 ^ 10 )
= ( 2 .1 + 2 .2 ) + ( 2 ^ 3 . 1 + 2 ^ 3 . 2 ) + ........+ ( 2 ^ 9 . 1 + 2 ^ 9 . 2 )
= 2 . ( 1 + 2 ) + 2 ^ 3 . ( 1 + 2 ) + .........+ 2 ^ 9 . ( 1 + 2 )
= 2 . 3 + 2 ^ 3 . 3 + ....... + 2 ^ 9 . 3
= 3 . ( 2 + 2 ^ 3 + ..... + 2 ^ 9 ) chia hết cho 3
\(\Rightarrow\) A chia hêt cho 3
\(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}.\frac{9}{2}-2.\frac{7}{3}\right)\)
\(=\frac{59}{10}:\frac{3}{2}-\left[\frac{7}{3}\left(\frac{9}{2}-2\right)\right]\)
\(=\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}.\frac{5}{2}\right)\)
\(=\frac{59}{10}:\frac{3}{2}-\frac{35}{6}\)
\(=\frac{59}{10}.\frac{2}{3}-\frac{35}{6}\)
\(=\frac{59}{15}+\frac{-35}{6}\)
\(=\frac{118}{30}+-\frac{175}{30}\)
\(=-\frac{57}{30}=-\frac{19}{10}\)
Chúc bạn học tốt môn Toán!!!
Học giỏi wá đi Minh