Cho M=|x-\(\frac{1}{2}\)| + \(\frac{3}{4}\)
a) Tính M khi x-1
Tìm GTNN của M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi x = 1 thì \(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)
b) Ta có \(\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow\left|x-\frac{1}{2}\right|\) \(+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> x = \(\frac{1}{2}\)
BĐT Bunhiacopxky em chưa học cô ạ
Cô cong cách nào không ạ
Nguyễn Thị Nguyệt Ánh:
Vậy thì bạn có thể chứng minh $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$ thông qua BĐT Cô-si:
Áp dụng BĐT Cô-si:
$x+y+z\geq 3\sqrt[3]{xyz}$
$xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}$
Nhân theo vế:
$(x+y+z)(xy+yz+xz)\geq 9xyz$
$\Rightarrow \frac{xy+yz+xz}{xyz}\geq \frac{9}{x+y+z}$
hay $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
1. ĐKXĐ: \(x>0\)
\(A=\sqrt{x}+\frac{1}{\sqrt{x}}-1\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{x}}}-1=2-1=1\)
\(A_{min}=1\) khi \(x=1\)
2. ĐKXĐ: \(x\ge0\)
\(x=\frac{4-2\sqrt{3}}{4}=\left(\frac{\sqrt{3}-1}{2}\right)^2\Rightarrow\sqrt{x}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{\left(\frac{\sqrt{3}-1}{2}+1\right)^2}=\frac{8\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}=\frac{8\left(\sqrt{3}-1\right)^3}{4}=-20+12\sqrt{3}\)
\(P=\frac{1}{2}\Rightarrow\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)^2}=\frac{1}{2}\Leftrightarrow8\sqrt{x}=x+2\sqrt{x}+1\)
\(\Leftrightarrow x-6\sqrt{x}+1=0\Rightarrow\sqrt{x}=3\pm2\sqrt{2}\)
\(\Rightarrow x=17\pm12\sqrt{2}\)
a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)
\(\Leftrightarrow\sqrt{x}+1\ge1\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)
\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi x=0
Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0
\(ĐKXĐ:\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(B=A\left(x-1\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\right)\left(x-1\right)\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2\)
\(=x+\sqrt{x}-2\sqrt{x}+2-2\)
\(=x-\sqrt{x}\)
\(=x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)
Vậy \(Min_B=-\frac{1}{4}\) khi \(x=\frac{1}{4}\)
a) (Nếu là tính M khi x = 1)
\(M=\left|1-\frac{1}{2}\right|+\frac{3}{4}=\left|\frac{1}{2}\right|+\frac{3}{4}=\frac{1}{2}+\frac{3}{4}=\frac{5}{4}\)
b) Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)
=> \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
GTNN của M là \(\frac{3}{4}\) <=> \(\left|x-\frac{1}{2}\right|=0\) <=> \(x=\frac{1}{2}\)
a) Tính M khi x - 1 là sao bạn ?