Cho các số tự nhiên a b thõa mản 78<a<b<81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy + 4x = 35 + 5y
=> xy + 4x - 5y = 35
=> x(y + 4) - 5(y + 4) = 15
=> (x - 5)(y + 4) = 15
=> x - 5;y + 4 \(\in\)Ư(15) = {1; 3; 5; 15}
Lập bảng :
x - 5 | 1 | 3 | 5 | 15 |
y + 4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1(loại) | -3(loại) |
Vậy ...
b) 2|x| + y2 + y = 2x + 1
Ta có: 2x + 1 là số lẻ => 2|x| + y2 + y là số lẻ
Mà y2 + y = y(y + 1) là số chẵn => 2|x| là số lẻ
<=> 2|x| = 1 <=> 2|x| = 20 <=> |x| = 0 <=> x = 0
Với x = 0 => 20 + y2 + y = 2.0 + 1
=> 1 + y2 + y = 1
=> y(y + 1) = 0
=> \(\orbr{\begin{cases}y=0\\y+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)
Do x; y \(\in\)N => x = y = 0 (tm)
BT: Cho a,b,c là 3 số cực dương thõa mản :
a+b-c/c=b+c-a/a=a+c-b/b
Tính M = (1+a/b)(1+a/c)(1+c/b)+2020
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{a+b+c}=1\) (vì a + b + c \(\ne\)0)
=> \(\hept{\begin{cases}\frac{a+b-c}{c}=1\\\frac{b+c-a}{a}=1\\\frac{a+c-b}{b}=1\end{cases}}\) => \(\hept{\begin{cases}a+b-c=c\\b+c-a=a\\a+c-b=b\end{cases}}\) => \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó, ta có:
M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)+2020\)
M = \(\left(\frac{a+b}{b}\right)\left(\frac{a+c}{c}\right)\left(\frac{b+c}{b}\right)+2020\)
M = \(\frac{2c}{b}.\frac{2b}{c}.\frac{2a}{b}+2020\)
M = \(\frac{8a}{b}+2020\) (xem lại đề)
a=79
b=80
ở trong toán violympic phải ko
****