K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

câu này dễ lắm

28 tháng 10 2018

Dễ thì tự làm đi

19 tháng 10 2016

A B C D E F M x a-x x a-x a a

Gọi AE = x thì BE = a-x

Ta có : \(S_{DEF}=S_{ABCD}-S_{ADE}-S_{BEF}-S_{DEC}\)

\(=a^2-\frac{ax}{2}-\frac{x\left(a-x\right)}{2}-\frac{a\left(a-x\right)}{2}\)

\(=\frac{a^2-ax+x^2}{2}=\frac{1}{2}\left[\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{4}\right]\)

\(=\frac{1}{2}\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{8}\ge\frac{3a^2}{8}\)

Dấu "=" xảy ra khi \(x=\frac{a}{2}\Rightarrow\hept{\begin{cases}AE=EB\\BF=FC\end{cases}\Rightarrow}\)M là trung điểm của AC hay M là giao điểm của AC và BD thì diện tích tam giác DEF đạt giá trị nhỏ nhất bằng \(\frac{3a^2}{8}\)

19 tháng 10 2016

cảm ơn bạn

1 tháng 1 2016

 a. Dễ thấy AEM F là hình chữ nhật => AE = FM 

Dễ thấy tg DFM vuông cân tại F => FM = DF 

=> AE = DF => tg vuông ADE = tg vuông DCF ( AE = DF; AD = DC) => DE = CF 

tg vuông ADE = tg vuông DCF => ^ADE = ^DCF => DE vuông góc CF (1) ( vì đã có AD vuông góc DC) 

b) Tương tự câu a) dễ thấy AF = BE => tg vuông ABF = tg vuông BCE => ^ABF = ^BCE => BF vuông góc CE ( vì đã có AB vuông góc BC) (2) 

Gọi H là giao điểm của BF và DE 

Từ (1) ở câu a) và (2) => H là trực tâm của tg CEF 

Mặt khác gọi N là giao điểm của BC và MF. dễ thấy CN = DF = AE: MN = EM = A F => tg vuông AEF = tg vuông CMN => ^AEF = ^MCN => CM vuông góc EF ( vì đã có CN vuông góc AE) => CM là đường cao thuộc đỉnh C của tg CE F => CM phải đi qua trực tâm H => 3 đường thẳng DE;BF,CM đồng quy tại H 

c) Dễ thấy AE + EM = AE + EB = AB = không đổi 

(AE - EM)^2 >=0 <=> AE^2 + EM^2 >= 2AE.EM <=> (AE + EM)^2 >=4AE.EM <=> [(AE + EM)/2]^2 >= AE.EM <=> AB^2/4 >=S(AEM F) 

Vậy S(AEM F ) max khi AE = EM => M trùng tâm O của hình vuông ABCD

1 tháng 1 2016

Tìm x, y thuộc Z sao cho:

x(y+2)=-8

xy - 2x- 2y=0

có ai on ko nó chuyện vs mih chứ ai đng xem bóng đá thì cứ xem