K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

a) Hàm số f(x) =  xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và x→ 4 khi n → +∞.

Ta có lim f(xn) = lim  =  = .

Vậy   = .

b) Hàm số f(x) =  xác định trên R.

Giả sử (xn) là dãy số bất kì và x→ +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim  = -5.

Vậy   = -5.

 

4 tháng 7 2018

lim x → + ∞ x 3   +   1 x 2   +   1   =   + ∞

3 tháng 11 2019

lim x → 5     x + 3 x - 3 =   - 4

29 tháng 9 2018

TXĐ: D = R.

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

Lấy dãy (xn) bất kì thỏa mãn xn → +∞

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

26 tháng 12 2017

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

Lấy dãy (xn) bất kì; xn ∈ D; lim xn = 4.

Bài 1 trang 132 sgk Đại Số 11 | Để học tốt Toán 11

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\mathop {\lim }\limits_{x \to  - 3} {x^2};\)            

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} =  - 3.\)

Ta có \(\lim x_n^2 = {\left( { - 3} \right)^2} = 9\)

Vậy \(\mathop {\lim }\limits_{x \to  - 3} {x^2} = 9.\)

b) \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}}.\)

Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thỏa mãn \(\lim {x_n} = 5.\)

Ta có \(\lim \frac{{{x_n}^2 - 25}}{{{x_n} - 5}} = \lim \frac{{\left( {{x_n} - 5} \right)\left( {{x_n} + 5} \right)}}{{{x_n} - 5}} = \lim \left( {{x_n} + 5} \right) = \lim {x_n} + 5 = 5 + 5 = 10\)

Vậy \(\mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 25}}{{x - 5}} = 10.\)

29 tháng 1 2017

Chọn C.

- Theo định nghĩa đạo hàm tại điểm  x   =   x 0 .

24 tháng 4 2018

Chọn C.

- Theo định nghĩa đạo hàm tại điểm  x   =   x 0 .  

4 tháng 4 2017

a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).

Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.

Ta có lim f(xn) = lim = = .

Vậy = .

b) Hàm số f(x) = xác định trên R.

Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.

Ta có lim f(xn) = lim = lim = -5.

Vậy = -5.



QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Đặt \({u_n} = 2 + {\left( {\frac{2}{3}} \right)^n} \Leftrightarrow {u_n} - 2 = {\left( {\frac{2}{3}} \right)^n}\).

Suy ra \(\lim \left( {{u_n} - 2} \right) = \lim {\left( {\frac{2}{3}} \right)^n} = 0\)

Theo định nghĩa, ta có \(\lim {u_n} = 2\). Vậy \(\lim \left( {2 + {{\left( {\frac{2}{3}} \right)}^n}} \right) = 2\)

b) Đặt \({u_n} = \frac{{1 - 4n}}{n} = \frac{1}{n} - 4 \Leftrightarrow {u_n} - \left( { - 4} \right) = \frac{1}{n}\).

Suy ra \(\lim \left( {{u_n} - \left( { - 4} \right)} \right) = \lim \frac{1}{n} = 0\).

Theo định nghĩa, ta có \(\lim {u_n} =  - 4\). Vậy \(\lim \left( {\frac{{1 - 4n}}{n}} \right) =  - 4\)