rút gọn
b) B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(318 + 1)(332 + 1);
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)
b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)
a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)
Mà B = 20062
=> 20062 - 1 < 20062
=> A < B
b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)
B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1
Mà C = 232
=> B < C
c) Tương tự như câu b
\(\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\\ 2A=\left(3^8-1\right)\left(3^8+1\right)...\left(3^{64}-1\right)\\ ...\\ 2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\\ 2A=3^{128}-1\)
Vậy \(A=\dfrac{3^{128}-1}{2}.\)
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
1.
a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)
\(2A=2+2^2+2^3+....+2^{2008}\)
b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)
\(=2^{2008}-1\) (bạn xem lại đề)
2.
\(A=1+3+3^1+3^2+...+3^7\)
a. \(2A=2+2.3+2.3^2+...+2.3^7\)
b.\(3A=3+3^2+3^3+...+3^8\)
\(2A=3^8-1\)
\(=>A=\dfrac{2^8-1}{2}\)
3
.\(B=1+3+3^2+..+3^{2006}\)
a. \(3B=3+3^2+3^3+...+3^{2007}\)
b. \(3B-B=2^{2007}-1\)
\(B=\dfrac{2^{2007}-1}{2}\)
4.
Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)
a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)
b.\(4C-C=4^7-1\)
\(C=\dfrac{4^7-1}{3}\)
5.
\(S=1+2+2^2+2^3+...+2^{2017}\)
\(2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(S=2^{2018}-1\)
4:
a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6
=>4*C=4+4^2+...+4^7
b: 4*C=4+4^2+...+4^7
C=1+4+...+4^6
=>3C=4^7-1
=>\(C=\dfrac{4^7-1}{3}\)
5:
2S=2+2^2+2^3+...+2^2018
=>2S-S=2^2018-1
=>S=2^2018-1
Trả lời:
Sửa đề: B = ( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
=> 2B = 2( 3 + 1 )( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 32 - 1 ) ( 32 + 1 )( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 34 - 1) ( 34 + 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 38 - 1 )( 38 + 1 )( 316 + 1 )( 332 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )
= ( 332 - 1 )( 332 + 1 )
= 364 - 1
=> B = \(\frac{3^{64}-1}{2}\)