A=102016+4/21 + 102017+6/63
khó wááá!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 + 4 + 6 + 8 + ... + 2.x = 210
=> 2.1 + 2.2 + 2.3 +2.4 + ... + 2.x = 210
=> 2.( 1 + 2 + 3 + 4 + ... +x ) = 210
=> 2. [ x.( x+ 1) /2 ] = 210
=> x. ( x + 1 ) = 210
hay x.( x + 1) = 14.(14 + 1)
Vậy x = 14
\(A=\dfrac{10^{2017}+1}{10^{2018}+1}\)
=>\(10A=\dfrac{10^{2018}+1+9}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)
\(B=\dfrac{10^{2018}+1}{10^{2019}+1}\)
=>\(10B=\dfrac{10^{2019}+1+9}{10^{2019}+1}=1+\dfrac{9}{10^{2019}+1}\)
Do đó:\(10B< 10A\)=>\(B< A\)
\(A=\dfrac{10^{2017}+1}{10^{2018}+1}\)
\(10A=\dfrac{10\left(10^{2017}+1\right)}{10^{2018}+1}=\dfrac{10^{2018}+10}{10^{2018}+1}=\dfrac{10^{2018}+1+9}{10^{2018}+1}=\dfrac{10^{2018}+1}{10^{2018}+1}+\dfrac{9}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)\(B=\dfrac{10^{2018}+1}{10^{2019}+1}\)
\(10B=\dfrac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\dfrac{10^{2019}+10}{10^{2019}+1}=\dfrac{10^{2019}+1+9}{10^{2019}+1}=\dfrac{10^{2019}+1}{10^{2019}+1}+\dfrac{9}{10^{2019}+1}=1+\dfrac{9}{10^{2019}+1}\)Vì \(1+\dfrac{9}{10^{2018}+1}>1+\dfrac{9}{10^{2019}+1}\)
Nên \(10A>10B\)
Nên \(A>B\)
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Giúpppp mìnhh vớiiiiiiiiiiiiiiiiiiiiiiiii nhanhhhhhhhhhhh lênnnnnnnnnnnnnnnnn
a) \(\dfrac{7}{-25}+\dfrac{8}{25}=\dfrac{-7}{25}+\dfrac{8}{25}=\dfrac{1}{25}\)
\(\dfrac{4}{5}+\dfrac{4}{-18}=\dfrac{4}{5+\left(-18\right)}=\dfrac{4}{-13}=\dfrac{-4}{13}\)
\(\dfrac{7}{21}+\dfrac{9}{-36}=\dfrac{1}{3}+\dfrac{1}{-4}=\dfrac{1}{3+\left(-4\right)}=\dfrac{1}{-1}=1\)
b) \(\dfrac{12}{20}-\dfrac{2}{5}=\dfrac{12}{20}+\left(\dfrac{-2}{5}\right)=\dfrac{3}{5}+\dfrac{-2}{5}=\dfrac{3+\left(-2\right)}{5}=\dfrac{1}{5}\)
\(\dfrac{2}{3}-\dfrac{-5}{6}=\dfrac{2}{3}+\dfrac{5}{6}=\dfrac{4}{6}+\dfrac{5}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(6-\dfrac{3}{20}=6+\dfrac{-3}{20}=\dfrac{60}{60}+\dfrac{-9}{60}=\dfrac{51}{60}\)
c) \(\dfrac{2}{21}.\dfrac{-7}{3}=\dfrac{2.\left(-1\right)}{7.3}=\dfrac{-2}{21}\)
\(\dfrac{27}{28}.\left(-21\right)=\dfrac{27.\left(-21\right)}{28}=\dfrac{-567}{28}\)
\(\dfrac{-15}{7}.\dfrac{-14}{25}=\dfrac{-3.\left(-2\right)}{1.5}=\dfrac{6}{5}\)
Tính hả bạn
chứng tỏ biểu thức là số nguyên nha [mk quên]nha PHẠM NGUYỄN TẤN ĐẠT