K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

A B C D I M E   

Chứng minh: 

a) - Xét ΔABD và ΔAID có

       Góc ABD = Góc AID (=90 độ)

       AD chung 

       Góc BAD = Góc IAD ( AD là phân giác của góc A)

→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)

    →AB = AI (2 cạnh tương ứng)

        BD = BI (2 cạnh tương ứng)

b) - Xét ΔBMD và ΔICD có:

        Góc MBD = Góc CID (=90 độ)

        BD = BI (CMT)

         Góc BDM = Góc IDC (Đối đỉnh)

→ ΔBMD = ΔICD (g.c.g)

  → DM = DC (2 cạnh tương ứng)

      BM = IC   ( nt )

c) - Ta có:

AB = AI (CMT) và BM = IC (CMT)

→ AB + BM = AI + IC → AM = AC

          → ΔAMC cân tại A                                                                                            (1)

   - Mà: 

ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ)                     (2)

Từ (1) và (2) 

→ ΔAMC là tam giác đều

d) - Ta có: MD = MC (CMT)                                                                                               (3)

    - Xét ΔIDC có góc DIC = 90 độ

                           góc ICD = 30 độ

→ ID =  \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền)         (4)

Từ (3) và (4) 

→ ID = \(\frac{1}{2}\) MD

- Xong rồi nhé

- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy

- GT, KL bạn tự làm

- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi

- Tham khảo, chép xong thì đọc lại xem hiểu không

- Bài này không phải dạng vừa đâu!!

- Có gì cho Hon không nạ

- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann

 

9 tháng 5 2016

cảm ơn bn rất nhiều yeu

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

góc BAD=góc IAD

=>ΔABD=ΔAID

=>AB=AI

b: Xét ΔDBM vuông tại B và ΔDIC vuông tại I có

DB=DI

góc BDM=góc IDC

=>ΔBDM=ΔIDC

=>DM=DC

c: AB+BM=AM

AI+IC=AC

mà AB=AI và MB=IC

nên AM=AC

mà góc MAC=60 độ

nên ΔMAC đều

d: Xét ΔDBM vuông tại B có sin M=BD/DM

=>BD/DM=1/2

=>DM=2BD=2DI

a: Xét ΔABD vuông tại B và ΔAID vuông tại I có

AD chung

\(\widehat{BAD}=\widehat{IAD}\)

Do đó: ΔABD=ΔAID

Suy ra: AB=AI

hay ΔABI cân tại A

b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có

DB=DI

\(\widehat{BDM}=\widehat{IDC}\)

Do đó: ΔBDM=ΔIDC

Suy ra: DM=DC

c: Ta có: ΔBDM=ΔIDC

nên BM=IC

Ta có: AB+BM=AM

AI+IC=AC

mà AB=AI

và BM=IC

nên AM=AC
hay ΔAMC cân tại A

mà \(\widehat{MAC}=60^0\)

nên ΔAMC đều

1 tháng 5 2023

Tự kẻ hình

a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)

b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có: 
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề) 
   => DM = DC (2 cạnh tương ứng) 

c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng) 
- Xét tam giác vuông AMD, có 
   AD + AM > DM (bất đẳng thức tam giác) 
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm) 

 

24 tháng 4 2018

Mình cx đg cần câu trả lời của bài này.

28 tháng 4 2018

ai giải đc bài này ko ???

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=9^2+12^2=225\)

=>\(BC=\sqrt{225}=15\left(cm\right)\)

b: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)

Do đó: ΔBAD=ΔBMD

=>DA=DM

c: Xét ΔDAE vuông tại A và ΔDMC vuông tại M có

DA=DM

\(\widehat{ADE}=\widehat{MDC}\)(hai góc đối đỉnh)

Do đó: ΔDAE=ΔDMC

=>AE=MC

Ta có: ΔBAD=ΔBMD

=>BA=BM

Xét ΔBEC có \(\dfrac{BA}{AE}=\dfrac{BM}{MC}\)

nên AM//EC

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: AD=ED(Hai cạnh tương ứng)

19 tháng 12 2020

Bạn chú ý viết cách phần cho và phần yêu cầu.

a/ Xét t/g ABI và t/g ADI có

AI : chung

\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)

AB = AD (GT)

=> t/g ABI = t/g ADI (c.g.c)

=> BI = DI (2 cạnh t/ứ)

b/ Có t/g ABI = t/g ADI

=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)

=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)

=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có

\(\widehat{IBK}=\widehat{IDC}\)

IB = DI (cmt)

\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)

=> t/g BIK = t/g DIC (g.c.g)

c/ Có t/g BIK = t/g DIC

=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD

=> AK = AC

=> t/g AKC cân tại A 

Mà AI là pg góc BAC (K thuộc AB)

=> AI đồng thời là đường cao t/g AKC

=> AI ⊥ KC Mà BH ⊥ KC

=> AI // BH

19 tháng 12 2020

bạn tự vẽ hình nhá

Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)

a) xét Δ ABI và ΔADI, có:

 AB=AD

\(\widehat{BAI}=\widehat{DAI}\)  (cmt)    

AI chung

⇒Δ ABI  =Δ ADI (c.g.c)

⇒BI=DI (2 cạnh t/ứng) (đpcm)

b) Do Δ ABI  =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)

Có: \(\widehat{ABI}+\widehat{IBK}\) =180(2 góc kề bù)

      \(\widehat{ADI}+\widehat{IDC}\) =180(2 góc kề bù)

Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)

Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)

xét Δ BKI và Δ DCI có:

\(\widehat{IBK}=\widehat{IDC}\) (cmt)

BI=ID (cmt)

\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)

⇒Δ BKI = Δ DCI (g.c.g) (đpcm)

c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC

Có AB=AD (gt) ; BK=DC (cmt)

⇔AB+BK=AD+DC

⇔AK=AC

⇒Δ ACK cân tại A.

Mà AI là phân giác của \(\widehat{KAC}\) (gt)

⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.

⇒AI ⊥ CK. mà BH ⊥ CK (gt)

⇒AI // BH (đpcm)

 

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=MD

mà DM<DC

nên AD<DC

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

ΔBKC cân tại B

mà BN là phângíac

nên BN vuông góc KC

21 tháng 5 2023

a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có

BD chung

góc ABD=góc MBD

=>ΔBAD=ΔBMD

b: AD=MD

mà DM<DC

nên AD<DC

c: Xét ΔDAK vuông tại A và ΔDMC vuông tại M có

DA=DM

góc ADK=góc MDC

=>ΔDAK=ΔDMC

=>DK=DC

=>ΔDKC cân tại D

ΔBKC cân tại B

mà BN là phângíac

nên BN vuông góc KC

 

 

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

11 tháng 5 2023

Bạn ơi cho hỏi là Ak/Ab = AH/Ac là sao ạ