Giải bất phương trình :
\(2^x+4^x+2.6^x>2^{x+1}+4.3^x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
\(\dfrac{x+1}{98}+\dfrac{x+2}{97}+\dfrac{x+90}{9}+\dfrac{x+84}{15}>-4\\ \Leftrightarrow\left(\dfrac{x+1}{98}+1\right)+\left(\dfrac{x+2}{97}+1\right)+\left(\dfrac{x+90}{9}+1\right)+\left(\dfrac{x+84}{15}+1\right)>0\\ \Leftrightarrow\dfrac{x+99}{98}+\dfrac{x+99}{97}+\dfrac{x+99}{9}+\dfrac{x+99}{15}>0\\ \Leftrightarrow\left(x+99\right)\left(\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{9}+\dfrac{1}{15}\right)>0\)
Vì \(\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{9}+\dfrac{1}{15}>0\Rightarrow x+99>0\Rightarrow x>-99\)
\(\frac{x^2+x-6}{x-4}>0\) <=> \(\frac{\left(x^2-4\right)+\left(x-2\right)}{x-4}>0\) <=> \(\frac{\left(x-2\right)\left(x+2\right)+\left(x-2\right)}{x-4}>0\)
<=> \(\frac{\left(x-2\right)\left(x+3\right)}{x-4}>0\). Có các TH:
+/ TH1: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)>0\\x-4>0\end{cases}}< =>\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)(1)
+/ TH2: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)< 0\\x-4< 0\end{cases}}< =>-3< x< 2\) (2)
Từ (1) và (2) => Nghiệm của PT là: x<2; x khác 3 và x>4
Để \(\frac{x^2+x-6}{x-4}>0\)thì
\(x^2+x-6>0\)và \(x-4>0\)Với điều kiện \(x\ne4\)
Thứ 1
Để \(x^2+x-6>0\)
Thì \(x^2+x>6\)
Mà \(x^2\ge0\)và \(x^2>x\)
Suy ra \(x^2+x\ge0\)
Suy ra \(x>2\)và \(x\ge-2\)
Thứ 2
\(x-4>0\)
Suy ra \(x>4\)
Vậy x phải thỏa mãn điều kiện sau
\(x\ge-2\)
Đặt \(2^x=a;3^x=b;a>0;b>0\)
Bất phương trình trở thành :
\(a+a^2+2ab>2a+4b+2\Leftrightarrow\left(a+2b+1\right)\left(a-2\right)>0\Leftrightarrow a>2\)
Suy ra \(2^x>2\Leftrightarrow x>1\)
Vậy tập nghiệm của bất phương trình là \(S=\left(1;+\infty\right)\)