cho y=\(\ln\frac{1}{1+x}\) chứng minh hệ thứ xy'+1=\(e^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(y'=\frac{-1-\frac{1}{x}}{\left(1+x+\ln x\right)^2}=-\frac{x+1}{x\left(1+x+\ln x\right)^2}\)
\(\Rightarrow xy'=-\frac{x+1}{\left(1+x+\ln x\right)^2}\) (1)
Lại có \(y\left(y\ln x-1\right)=\frac{-1-x}{\left(1+x+\ln x\right)^2}\) (2)
Từ (1) và (2) suy ra \(xy'=y\left(y\ln x-1\right)\)
Ta có : \(y=\ln\left(\frac{1}{1+x}\right)\Rightarrow y'=\frac{-\frac{1}{\left(1+x\right)^2}}{\frac{1}{1+x}}=\frac{-1}{1+x}\)
\(\Rightarrow\begin{cases}xy'+1=\frac{-x}{1+x}+1=\frac{1}{1+x}\\e^y=e^{\ln\left(\frac{1}{1+x}\right)}=\frac{1}{1+x}\end{cases}\)
\(\Rightarrow xy'+1=e^y\) (điều phải chứng minh)
\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)
Ta có : \(y=\frac{1}{1+x+\ln x}\Rightarrow y'=\frac{-\left(1+\frac{1}{x}\right)}{\left(1+x+\ln x\right)^2}=\frac{-\left(1+x\right)}{x\left(1+x+\ln x\right)^2}\)
\(\Rightarrow\begin{cases}xy'=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\\y\left(y\ln x-1\right)=\frac{1}{1+x+\ln x}\left(\frac{\ln}{1+x+\ln x}-1\right)=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\end{cases}\)
\(\Rightarrow xy'=y\left(y\ln x-1\right)\Rightarrow\) Điều phải chứng minh
Ta có : \(y'=x+\frac{1}{2}\left(\sqrt{x^2+1}+x\frac{x}{\sqrt{x^2+1}}\right)+\frac{\frac{1+\frac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}}{\sqrt{x+\sqrt{x^2+1}}}\)
\(=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{x+\sqrt{x^2+1}}{2\left(x+\sqrt{x^2+1}\right)\sqrt{x^2+1}}=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{1}{2\sqrt{x^2+1}}\)
\(=x+\frac{2\left(x^2+1\right)}{2\sqrt{x^2+1}}=x+\sqrt{x^2+1}\)
\(\Rightarrow\begin{cases}xy'+\ln y'=x\left(x+\sqrt{x^2+1}\right)+\ln\left(x+\sqrt{x^2+1}\right)=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\\2y=x^2+x\sqrt{x^2+1}+2\ln\sqrt{x+\sqrt{x^2+1}}=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\end{cases}\)
\(\Rightarrow2y=xy'+\ln y'\)\(\Rightarrow\) Điều phải chứng minh
Ta có \(y'=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\)
\(\Rightarrow y"=\frac{x.\frac{-\sin\left(\ln x\right)-\cos\left(\ln x\right)}{x}-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\)
Ta có :
\(y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{e^x} - {e^{{x_0}}}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0} + \Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.{e^{\Delta x}} - {e^{{x_0}}}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{{x_0}}}.\left( {{e^{\Delta x}} - 1} \right)}}{{\Delta x}}\\ & = \mathop {\lim }\limits_{\Delta x \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} = {e^{{x_0}}}.1 = {e^{{x_0}}}\end{array}\)
Vậy \({\left( {{e^x}} \right)^\prime } = {e^x}\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} > 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\ln {\rm{x}} - \ln {{\rm{x}}_0}}}{{x - {x_0}}}\)
Đặt \(x = {x_0} + \Delta x\). Ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {{x_0} + \Delta x} \right) - \ln {{\rm{x}}_0}}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {\frac{{{x_0} + \Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}}.\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}}\end{array}\)
Đặt \(\frac{{\Delta x}}{{{x_0}}} = t\). Lại có: \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{1}{{{x_0}}} = \frac{1}{{{x_0}}};\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\ln \left( {1 + \frac{{\Delta x}}{{{{\rm{x}}_0}}}} \right)}}{{\frac{{\Delta x}}{{{x_0}}}}} = \mathop {\lim }\limits_{t \to 0} \frac{{\ln \left( {1 + t} \right)}}{t} = 1\)
Vậy \(f'\left( {{x_0}} \right) = \frac{1}{{{x_0}}}.1 = \frac{1}{{{x_0}}}\)
Vậy \({\left( {\ln x} \right)^\prime } = \frac{1}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).
ta có \(\ln\frac{1}{1+x}=-\ln\left(1+x\right)\Rightarrow y'=-\frac{1}{1+x}\)
vậy xy'+1=\(\frac{-x}{1+x}+1=\frac{1}{1+x}=e^y\)
Em không hiểu tại sao lại bằng e^y