CMR với mọi số tự nhiên n thì phân số \(\frac{4n+3}{2n+1}\) tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi p là ƯC(2n+3,4n+8)
Ta có
2n+3 chia hết cho p <=> 1(2n+3) chia hết cho p
4n+8 chia hết cho p <=> (4n+8):2 chia hết cho p
=> (4n+8):2 - 1(2n+3) chia hết cho p
=> 2n+4 - 2n+3 chia hết cho p
=> 1 chia hết cho p
=> p thuộc Ư(1)
=> 2n+3 / 4n+8 là phân số tối giản
Gọi ước chung lớn nhất của 2n + 1 và 4n + 3 là d
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\4n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2\left(2n+1\right)⋮d\\4n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4n+2⋮d\\4n+3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta có: 4n + 3 - ( 4n + 2) ⋮ d
⇒ 4n + 3 - 4n - 2 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vậy ước chung lớn nhất của 2n + 1 và 4n + 3 là 1 hay phân số:
\(\dfrac{2n+1}{4n+3}\) là phân số tối giản ( đpcm)
Gọi d là ƯCLN của 2n+3 và 2n2+4n+1,\(d\in N\ne0\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\left(1\right)\\2n^2+4n+1⋮d\left(2\right)\end{cases}\Rightarrow\hept{\begin{cases}\left(2n+3\right)^2⋮d\\2\left(2n^2+4n+1\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}4n^2+12n+9⋮d\\4n^2+8n+2⋮d\end{cases}}\)
\(\Rightarrow4n^2+12n+9-4n^2-8n-2⋮d\)
\(\Rightarrow4n+7⋮d\left(1\right)\)
Từ\(2n+3⋮d\)\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\left(2\right)\)
Từ (1) và (2) \(\Rightarrow4n+7-4n-6⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...
a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)
=> n + 1 chia hết cho d; 2n + 3 chia hết cho d
=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d
=> (2n + 3) - (2n + 2) chia hết cho d
=> 2n + 3 - 2n - 2 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(n+1; 2n+3) = 1
=> n + 1 và 2n + 3 là 2 số nguyên tố cùng nhau
Câu b lm tương tự
Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\) là phân số tối giảm (đpcm)
Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\) là phân số tối giảm (đpcm)
:D
Giả sử phân số sau chưa tối giản
\(\Rightarrow2n+3⋮d;4n+8⋮d\left(d\in N;d>1\right)\)
\(2n+3⋮d\Rightarrow4n+6⋮d\)
\(\Rightarrow4n+8-4n-6⋮d\)
\(\Rightarrow2⋮d\)
Vậy d có thể = 2
Vậy p/s sau vẫn có thể tối giản đc
Giả sử ƯCLN (2n+3;4n+8)=d
\(\Rightarrow4n+8⋮d\)mà\(4n+8=2\left(2n+4\right)\)\(\Rightarrow2n+4⋮d\)
\(\Rightarrow d=2n+4-\left(2n+3\right)\)\(=2n+4-2n-3\)\(=1\)
Do d=1 thì \(\frac{2n+3}{4n+8}\)là số tối giản với bất kì số tư nhiên n
Chú bạn hok tốt
Gợi Ư CLN\(\left(2n+3;4n+8\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\Rightarrow2.\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\Rightarrow d=1;2\)
\(+d=2\Rightarrow2n+3⋮2\)
Mak 2n+3 ko chia hết cho 2
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\Rightarrowđpcm\)
Gọi d là ƯCLN (4n+3;2n+1)
Ta có 4n+3 chia hết cho d(1);2n+1 chia hết cho d
=>2*(2n+1) chia hết cho d
=>4n+2 chia hết cho d(2)
Từ (1) và (2)=>(4n+3)-(4n+2) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vì d=1 nên ƯCLN (4n+3;2n+1)=1
=>Phân số \(\frac{4n+3}{2n+1}\) là phân số tối giản với mọi số tự nhiên n