Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
AB // HK
AKI cân
BAK = AIK
AIC = AKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB⊥AC(ΔABC vuông tại A)
HK⊥AC(Gt)
Do đó: AB//HK(Định lí 1 từ vuông góc tới song song)
b) Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
KH=IH(gt)
AH chung
Do đó: ΔAKH=ΔAIH(hai cạnh góc vuông)
Suy ra: AK=AI(hai cạnh tương ứng)
Xét ΔAKI có AK=AI(cmt)
nên ΔAKI cân tại A(Định nghĩa tam giác cân)
a) sử dụng tc: Từ vuông góc đến //
b)tam giác KHA= tam giác IHA(c.g.c)
=> AK=AI
=> góc AKI=góc AIK
vì AK=AI=> tam giác AKI cân
c) vì AB//HK=> góc BAK=góc AKI(so le trong)
góc BAK=góc AKI
mà góc AKI=góc AIK(cmt)
d) vì HC vuông góc với KI, KH=HI( GT) =>HC là trung trực=> KC=CI( t/c đường trung trực
tam giác AKC = tam giác AIC(c.c.c)
a: Ta có: AB\(\perp\)AC
IK\(\perp\)AC
Do đó: IK//AB
b: Xét ΔAKH vuông tại H và ΔAIH vuông tại H có
AH chung
HK=HI
Do đó: ΔAKH=ΔAIH
Suy ra: AK=AI
Xét ΔAKI có AK=AI
nên ΔAKI cân tại A
c: Ta có: \(\widehat{BAK}+\widehat{HAK}=90^0\)
\(\widehat{AIK}+\widehat{HAI}=90^0\)
mà \(\widehat{HAK}=\widehat{HAI}\)
nên \(\widehat{BAK}=\widehat{AIK}\)
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
a)Vì tam giác ABC vuông tại A nên AB vuông góc với AC mà HK vuông góc với AC nên AB//HK
b)Ta có: ^AHK=^AHI=900 mà HI=HK nên AH là đường trung trực của KI
=>AK=AI(tính chất đường trung trực của đoạn thẳng)
nên tam giác AKI cân tại A
c)Vì tam giác AKI cân tại A nên ^AKI=^AIK(1)
Vì AB//HK nên ^BAK=^AKI( 2 góc sole trong)(2)
Từ (1);(2) => ^BAK=^AIK
d)Vì tam giác AIK có ^AHK=^AHI=900 nên AH là đường cao của tam giác AKI mà tam giác AKI cân tại A nên AH cũng là đường phân giác của tam giác AKI(tính chất đường cao, tia phân giác, đường trung trực, đường trung tuyến của một tam giác cân từ đỉnh đến cạnh đáy đối diện) hay ^KAH=^IAH
Xét tam giác AKC và tam giác AIC có:
AC là cạnh chung
^KAH=^IAH(CMT)
AK=AI(CMT)
Do đó, tam giác AKC=tam giác AIC(c.g.c)
=>^AKC=^AIC(2 góc tương ứng)
.