Cho tam giác cân ABC ( AB = AC), kẻ đường cao AH (H thuộc BC)
a) CMR: HB = HC ; góc BAH = góc CAH
b) Từ H kẻ HD vuông góc AB (D thuộc AB), kẻ HE vuông góc AC (E thuộc AC). CMR: AD = AE ; tam giác HDE cân
c) Giả sử AB = 10cm, BC = 16cm. Hãy tính AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
a/ Xét tam giác AHB và tam giác AHC có:
AH chung
Góc AHB=AHC=90o
Góc ABC=ACB(Tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC(ch-gn)
=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)
b/ Xét tam giác AHD và tam giác AHE có:
AH chung
ADH=AEH=900
DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)
=> Tam giác AHD=tam giác AHE(ch-gn)
=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)
=> Tam giác HDE cân tại H.
A B C D E H
a) Tam giác ABC cân tại A có AH là đường cao nên AH đồng thời là đường trung tuyến
=> HB = HC
Xét 2 tgiac vuông: tam giác ABH và tam giác ACH có:
AB = AC (gt)
HB = HC (cmt)
suy ra: tam giác ABH = tam giác ACH (ch_cgv)
=> góc BAH = góc CAH
2) HB = HC = 1/2 BC = 4cm
Áp dụng Pytago ta có:
AH2 + HB2 = AB2
=> AH2 = AB2 - HB2 = 9
=> AH = 3
3) Xét 2 tam giác vuông: tam giác HDB và tam giác HEC có:
BH = CH (cmt)
góc DBH = góc ECH (gt)
suy ra: tam giác HDB = tam giác HEC (ch_gn)
=> HD = HE
=> tam giác HDE cân tại H
a: Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên H là trung điểm của BC
hay BH=CH
b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H
c: Xét ΔABC có
AD/AB=AE/AC
Do đó: DE//BC
a) Xét hai tam giác vuông $AHB$ và $AHC$ có:
$AH$ là cạnh chung;
$AB = AC$ (gt);
Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)
Suy ra $HB = HC$ (Hai cạnh tương ứng)
$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).
b) Xét hai tam giác vuông $ADH$ và $AEH$ có:
$AH$ là cạnh chung;
$\widehat{BAH} = \widehat{CAH}$ (cmt);
Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).
Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.
Xét tam giác ABH và tam giác ACH
AB=AC(GT)
^AHB=^AHC=90o
^ABH=^ACH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác ABH = tam giác ACH
=> HB=HC ( 2c tứ)
có HB+HC=BC
mà BC=8 cm
HB=HC
=> HB=HC=4cm
Xét tam giác ABH : ^H=90o
=> AB2+AH2+BH2(đ/lý pythagoras)
thay số ta có :
52=AH2+42
25-16=AH2
9=AH2
3=AH
c)Xét tam giác BDH và tam giác ECH
^BDH= ^ HEC =90o
BH=CH
^DBH=^ECH ( TAM GIÁC ABC CÂN TẠI A)
=> tam giác BDH = tam giác ECH
=> DH=EH
=> HDE CÂN TẠI H (Đ/N)
d) qua tia đối của DH ; kẻ HK sao cho HK= DH
CÓ : tam giác HCK có cạnh HK là cạnh lớn nhất ( cạnh huyền) => HK > HC
mà HD=HK
=> HD>HC
hình tự vẽ
a)Xét tam giác AHB vuông ở H và tam giác AHC vuông ở H có:
AH:cạnh chung
AB=AC (gt)
=>tam giác AHB = tam giác AHC (ch-cgv)
=>HB = HC (cặp cạnh tương ứng)
và góc BAH = góc CAH (cặp góc tương ứng)
b)Vì góc BAH = góc CAH (cmt)
=>góc DAH = góc EAH
Xét tam giác AHD vuông tại D và tam giác AHE vuông tại E có:
AH:cạnh chung
góc DAH = góc EAH (cmt)
=>tam giác AHD = tam giác AHE (ch-gn)
=>AD = AE (cặp cạnh tương ứng)
và HD = HE (cặp cạnh tương ứng)
Xét tam giác HDE có: HD = HE (cmt)
=>tam giác HDE cân và cân ở H (DHNB tam giác cân)
c)Vì HB = HC (cmt)
Mà HB + HC = BC (vì H thuộc BC)
=>HB = HC = BC/2 = 16/2 = 8 (cm)
Xét tam giác AHB vuông tại H có: AH2+HB2 = AB2 (đ/l PyTaGo0
=>AH2 = AB2 - HB2 = 102 - 82 = 100 - 64 =36 = 62
=>AH = 6 (cm)