Chứng minh rằng họ đường cong \(\left(C_m\right):y=\frac{\left(3m+1\right)x-m^2+m}{x+m}\) luôn tiếp xúc với hai đường thẳng cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(M\left(x_0;y_0\right)\) là điểm mà họ \(\Delta_{\alpha}\) không đi qua. Khi đó phương trình sau vô nghiệm với mọi m : \(m^2-2\left(x^3_0+x_0\right)m+y_0+x^2_0-x_0-2=0\)
\(\Leftrightarrow\Delta'=\left(x^3_0+x_0\right)^2-\left(y_0+x^2_0-x_0-2\right)< 0\)
\(\Leftrightarrow y_0>x^6_0+2x^4_0+x_0+2\)
Xét phương trình : \(2mx^3-x^2+\left(2m+1\right)x-m^2+2=x^6+2x^4+x+2\)
\(\Leftrightarrow m^2-2\left(x^3+x\right)m+\left(x^3+x\right)^2=0\)
\(\Leftrightarrow\left(x^3+x-m\right)^2=0\) (*)
Vì phương trình \(x^3+x-m=0\) luôn có nghiệm nên (*) luôn có nghiệm bội.
Vậy \(\left(C_m\right)\) luôn tiếp xúc với đường cong \(y=x^6+2x^4+x+2\)
Khi đó: có nghiệm kép với mọi m
hay có nghiệm kép với mọi m
Cách 2: Gọi là các điểm mà họ đường thẳng trên không đi qua.
Hay vô nghiệm ẩn m
vô nghiệm ẩn m
Xét đường biên:
Lập phương trình hoành độ giao điểm ta được:
Phương trình này luôn có 1 nghiệm kép nên (dm) luôn tiếp xúc (P)
Ta có \(y=\left(m+1\right)x+m\left(m+1\right)+\frac{m^3}{x-m}\) suy ra tiệm cận xiên của \(\left(C_m\right)\) là đường thẳng d có phương trình \(y=\left(m+1\right)x+m\left(m+1\right)\)
Giả sử d luôn tiếp xúc với Parabol (P) : \(y=ax^2+bx+c;\left(a\ne0\right)\) khi đó phương trình sau có nghiệm bội với mọi m :
\(ax^2+bx+c=\left(m+1\right)x+m\left(m+1\right)\)
\(\Leftrightarrow ax^2+\left(b-m-1\right)x+c-m^2-m=0\)(*)
\(\Leftrightarrow\Delta=\left(m+1-b\right)^2-4a\left(c-m^2-m\right)=0\)
\(\Leftrightarrow\left(1+4a\right)m^2+2\left[\left(1-b\right)+2a\right]m+\left(1-b\right)^2-4ac=0\) với mọi m
\(\Leftrightarrow\begin{cases}1+4a=0\\\left(1-b\right)+2a=0\\\left(1-b\right)^2-4ac=0\end{cases}\)
\(\Leftrightarrow\begin{cases}a=-\frac{1}{4}\\b=\frac{1}{2}\\c=-\frac{1}{4}\end{cases}\)
\(\Rightarrow\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)
Vậy d luôn tiếp xúc với Parabol (P) \(y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)
Giả sử \(M\left(x_0;y_0\right)\) là điểm mà d không đi qua, khi đó phương trình :
\(y_0=\left(m+1\right)x_0+m^2+m\Leftrightarrow m^2+\left(x_0+1\right)m+x_0-y_0=0\) vô nghiệm với mọi m
\(\Leftrightarrow\Delta=\left(x_0+1\right)^2-4x_0+4y_0< 0\)
\(\Leftrightarrow y_0< -\frac{1}{4}x_0^2+\frac{1}{2}x_0-\frac{1}{4}\)
Ta dễ dàng chứng minh được d luôn tiếp xúc với Parabol
\(\left(P\right):y=-\frac{1}{4}x^2+\frac{1}{2}x-\frac{1}{4}\)
Phương trình \(\left(C_m\right)\) viết lại:
\(y=\left(x-m+2\right)^3-3\left(x-m+2\right)\)
Họ đồ thị hàm \(\left(C_m\right)\) đơn giản là đồ thị hàm \(y=x^3-3x\) tịnh tiến song song với trục Ox, do đó họ đồ thị này luôn tiếp xúc với các tiếp tuyến tại cực trị của \(y=x^3-3x\) (là hai đường thẳng \(y=\pm2\))
Vậy họ đường cong \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng cố định \(y=\pm2\)
a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1
Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)
b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)
Điều kiện cần : \(y'=\frac{9}{\left(x-m\right)^2}\)
Nếu có một tiếp tuyến cố định chung cho mọi đồ thị của họ \(\left(C_m\right)\) thì hiển nhiên hệ số góc của tiếp tuyến ấy không đổi
Theo ý nghĩa hình học của đạo hàm thì ắt tồn tại điểm x sao cho y' có góc không phụ thuộc m. Nếu có điều đó xảy ra thì ắt phải xảy ra tại các điểm mà
\(x-m=a\Leftrightarrow x=a+m\) (Với a là hằng số)
Tại \(x=a+m\), ta có \(y'=\frac{-9}{a^2};y=\frac{ma+3a-9}{a}\)
Phương trình tiếp tuyến của \(\left(C_m\right)\) là \(y=\frac{9}{a^2}\left(x-a-m\right)+\frac{ma+3a-9}{a}\)
\(\Leftrightarrow y=\frac{9}{a^2}\left[\left(9x-18a+3a^2+m\left(a^2-9\right)\right)\right]\) (1)
* Điều kiện đủ : Với \(a^2-9=0\Leftrightarrow a=\pm3\)
Ta có (1) \(\Leftrightarrow\left[\begin{array}{nghiempt}y=9\left(x-3\right)\\y=9\left(x+9\right)\end{array}\right.\)
Rõ ràng \(y=9x-27\) và \(y=9x+81\) là các tiếp tuyến cố định của họ đồ thị khi m thay đổi
Phương trình hoành độ giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) được viết thành :
\(\left(x+1\right)\left(x^2-3mx+2m^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-m\right)\left(x-2m\right)=0\)
\(\Rightarrow\) Giao điểm của \(\left(\Delta_m\right)\) và \(\left(C_m\right)\) gồm \(A\left(-1;-m-m^2\right);B\left(m;0\right)\) và \(C\left(2m;m^2\right)\), trong số đó, A là điểm duy nhất có hoành độ không đổi (khi m thay đổi)
Đặt \(f_m\left(x\right)=x^3-\left(3m-1\right)x^2+2m\left(m-1\right)x+m^2\)
Các tiếp tuyến của \(\left(C_m\right)\) tại B và C lần lượt là các đường thẳng :
\(\left(\Delta_B\right):y=f_m'\left(x_B\right)x+y_b-f_m'\left(x_B\right)x_B\)
\(\left(\Delta_C\right):y=f_m'\left(x_C\right)x+y_C-f_m'\left(x_C\right)x_C\)
Ta cần tìm m để B và C cùng khác A và \(\Delta_B\backslash\backslash\Delta_C\), tức là :
\(\begin{cases}x_B\ne x_A\\x_C\ne x_A\\f'_m\left(x_B\right)=f'_m\left(x_C\right)\\y_B-f'_m\left(x_B\right)x_B\ne y_C-f'_m\left(x_C\right)x_C\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-1\\m\ne-\frac{1}{2}\\-m^2=2m^2+2m\\m^3\ne-4m^3-3m^2\end{cases}\)
\(\Leftrightarrow m=-\frac{2}{3}\)
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
Giả sử \(\left(C_m\right)\) luôn tiếp xúc với đường thẳng \(y=ax+b\), khi đó phương trình sau có nghiệm với mọi m :
\(\begin{cases}\frac{\left(3m+1\right)x+m-m^2}{x+m}=ax+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\begin{cases}3m+1-\frac{4m^2}{x+m}=a\left(x+m\right)am+b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\)
\(\Leftrightarrow\begin{cases}\frac{8m^2}{x+m}=am+3m+1-b\\\frac{4m^2}{\left(x+m\right)^2}=a\end{cases}\) \(\Leftrightarrow\frac{\left(am+3m+1-b\right)^2}{16m^2}=a\) với mọi m
\(\Leftrightarrow\left(a^2-10a+9\right)m^2+2\left(a+3\right)\left(1-b\right)m+\left(1-b\right)^2=0\) với mọi m
\(\Leftrightarrow\begin{cases}a^2-10a+9=0\\\left(a+3\right)\left(1-b\right)=0\\\left(1-b\right)^2=0\end{cases}\)
\(\Leftrightarrow\begin{cases}a=1;a=9\\b=1\end{cases}\)
Vậy \(\left(C_m\right)\) luôn tiếp xúc với 2 đường thẳng \(y=x+1;y=9x+1\)