K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 1 2017

Lời giải:

Xét modulo $3$ cho $n$ thôi . Ở đây mình xét cụ thể TH $n=3k$. TH \(n=3k+1,3k+2\) ta hoàn toàn làm tương tự

TH1: \(n=3k\)

Ta có :

\(11^3\equiv 1\pmod 7\Rightarrow 11^n=11^{3k}\equiv 1\pmod 7\Rightarrow 11^{n+2}\equiv 11^2\equiv 2\pmod 7\)

\(12^6\equiv 1\pmod 7\Rightarrow 12^{2n}=12^{6k}\equiv 1\pmod 7\Rightarrow 12^{2n+1}\equiv 12\pmod 7\)

\(\Rightarrow 11^{n+2}+12^{2n+1}\equiv 14\equiv 0\pmod 7\) $(1)$

Lại có:

\(11^3\equiv 1\pmod {19}\Rightarrow 11^n=11^{3k}\equiv 1\pmod {19}\Rightarrow 11^{n+2}\equiv 7\pmod {19}\)

\(12^6\equiv 1\pmod {19}\Rightarrow 12^{2n}=12^{6k}\equiv 1\pmod {19}\Rightarrow 12^{2n+1}\equiv 12\pmod {19}\)

\(\Rightarrow 11^{n+2}+12^{2n+1}\equiv 19\equiv 0\pmod {19}\) $(2)$

Từ \((1),(2)\) kết hợp với \((7,19)=1\) suy ra \(11^{n+2}+12^{2n+1}\vdots (7.19=133)\) (đpcm)

26 tháng 1 2017

11n+2+122n+1=121*11n+12*144n

=(133-12)*11n+12*144n=133*11n+(144n-11n)*12

ta có 133*11n\(⋮\)133,(144n-11n)*12\(⋮\)(144-11)

vậy 11n+2+122n+1\(⋮\)133(đpcm)