K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

Ta làm như sau:

   \(\frac{6}{18}\)+\(\frac{6}{54}\)+\(\frac{6}{108}\)+...+\(\frac{6}{990}\)

=\(\frac{6}{3.6}\)+\(\frac{6}{6.9}\)+\(\frac{6}{9.12}\)+...\(\frac{6}{30.33}\)

=2 (\(\frac{3}{3.6}\)+\(\frac{3}{6.9}\)+\(\frac{3}{9.12}\)+...+\(\frac{3}{30.33}\)

=2 (\(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\))

=2 ( \(\frac{1}{3}-\frac{1}{33}\))

=2.\(\frac{10}{33}\)=\(\frac{2.10}{33}\)=\(\frac{20}{33}\)

15 tháng 4 2016

\(\frac{6}{18}+\frac{6}{54}+\frac{6}{108}+...+\frac{6}{990}\)

=\(\frac{6}{3.6}+\frac{6}{6.9}+\frac{6}{9.12}+...+\frac{6}{30.33}\)

= 2.(\(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\))

=2.(\(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\))

=2.[\(\frac{1}{3}+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)+...+\left(\frac{-1}{30}+\frac{1}{30}\right)+\frac{-1}{33}\)]

=2.\(\left[\frac{1}{3}+\frac{-1}{33}\right]\)

=2.\(\left[\frac{11}{33}+\frac{-1}{33}\right]\)

=2.\(\frac{10}{33}\)

=\(\frac{20}{33}\)

\(N=\frac{1}{3.6}+\frac{1}{6.9}+...+\frac{1}{30.33}\)

=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)

=\(\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{10}{33}\)

9 tháng 4 2019

\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4970}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{70.71}\)

\(M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{70}-\frac{1}{71}\)

\(M=1-\frac{1}{71}\)

\(M=\frac{70}{71}\)

\(N=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(N=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(N=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)

\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(N=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(N=\frac{1}{3}.\frac{10}{33}\)

\(N=\frac{10}{99}\)

8 tháng 2 2019

\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)

\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)

\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)

\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)

\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(=\frac{1}{3}.\frac{10}{33}\)

\(=\frac{10}{99}\)

17 tháng 4 2017

A=.....

=\(7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+....+\frac{1}{69.70}\right)=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+.....+\frac{1}{69}-\frac{1}{70}\right)\)

=\(7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\frac{3}{35}=\frac{3}{5}\)

MẤY PHẦN SAU CX TÁCH MẪU RA RÙI LÀM NHƯ VẬY

TỰ LÀM NHE

9 tháng 8 2018

\(B=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+...+\frac{1}{30\cdot33}\)

\(B=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+...+\frac{3}{30\cdot33}\right)\)

\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(B=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(B=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)

\(C=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)

\(C=\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{9\cdot10}\right)\)

\(C=9-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\right)\)

\(C=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(C=9-\left(1-\frac{1}{10}\right)\)

\(C=9-\frac{9}{10}=\frac{81}{10}\)

1 tháng 4 2017

\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(=\frac{1}{3}.\frac{10}{33}\)

\(=\frac{10}{99}\)

Đúng không Bạch Dương ? 

1 tháng 4 2017

Ta có: \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(=\frac{1}{2.9}+\frac{1}{6.9}+\frac{1}{12.9}+...+\frac{1}{110.9}\)

\(=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

\(=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

\(=\frac{1}{9}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)

\(=\frac{1}{9}\left(\frac{1}{1}-\frac{1}{11}\right)\)

\(=\frac{1}{9}.\frac{10}{11}\)

\(=\frac{10}{99}\)

                Vậy \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}=\frac{10}{99}\)

25 tháng 4 2017

A=\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\) =\(\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)                                                                    =\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{1}{2}.\frac{10}{33}=\frac{5}{33}\)

25 tháng 4 2017

\(A=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)

\(A=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)

\(A=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)

\(A=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{11}\right)\)

\(A=\frac{1}{9}.\frac{10}{11}=\frac{10}{99}\)

10 tháng 4 2017

F =\(\frac{1}{18}\)+\(\frac{1}{54}\)+...+\(\frac{1}{990}\)

= 3(\(\frac{1}{3.6}\)+\(\frac{1}{6.9}\)+...+\(\frac{1}{30.33}\))

\(\frac{3}{3.6}\)+\(\frac{3}{6.9}\)+...+\(\frac{3}{30.33}\)

= 1 -\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{9}\)+...+\(\frac{1}{30}\)-\(\frac{1}{33}\)

= 1-\(\frac{1}{33}\)

=\(\frac{32}{33}\)

10 tháng 4 2017

gợi ý :1/18 +1/54 + ... +1/990

         = 1/3*6 + 1/6*9 + 1/9*13 + ... +1/30*33

17 tháng 4 2016

=1/3x6+1/6x9+1/9x12+...+1/30x33

=1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33

=1/3-1/33

=10/33

17 tháng 4 2016

\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}=\frac{1}{3}.\left(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\right)=\frac{1}{3}.\left(\frac{6-3}{3.6}+\frac{9-6}{6.9}+\frac{12-9}{9.12}+...+\frac{33-30}{30.33}\right)=\frac{1}{3}.\left(\frac{6}{3.6}-\frac{3}{3.6}+\frac{9}{6.9}-\frac{6}{6.9}+\frac{12}{9.12}-\frac{9}{9.12}+...+\frac{33}{30.33}-\frac{30}{30.33}\right)=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)=\frac{1}{3}.\frac{10}{33}=\frac{10}{99}\)

8 tháng 4 2016

\(\frac{1}{18}\)\(\frac{1}{54}\)\(\frac{1}{108}\)+ ... + \(\frac{1}{990}\)

=\(\frac{1}{3}\).(3.( \(\frac{1}{3.6}\) + \(\frac{1}{6.9}\) + \(\frac{1}{9.12}\) + ... + \(\frac{1}{30.33}\) ))

\(\frac{1}{3}\). (\(\frac{3}{3.6}\) + \(\frac{3}{6.9}\) + \(\frac{3}{9.12}\) + ... + \(\frac{3}{30.33}\) )

\(\frac{1}{3}\) . ( \(\frac{1}{3}-\frac{1}{6}\) + \(\frac{1}{6}-\frac{1}{9}\) + \(\frac{1}{9}-\frac{1}{12}\) + ... + \(\frac{1}{30}-\frac{1}{33}\) )

=\(\frac{1}{3}\) . ( \(\frac{1}{3}-\frac{1}{33}\) )

\(\frac{1}{3}\) . \(\frac{10}{33}\)

\(\frac{10}{99}\)

Nhớ k cho mình nhé!!!

8 tháng 4 2016

     \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+....+\frac{1}{990}\)

\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+.....+\frac{1}{30.33}\)

\(=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+.....+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)

\(=\frac{1}{3}.\left(\frac{11}{33}-\frac{1}{33}\right)\)

\(=\frac{1}{3}.\frac{10}{33}\)

\(=\frac{10}{99}\)

2 tháng 4 2017

Đặt A=1/18+1/54+1/108+...+1/990

=> A=1/3.6+1/6.9+1/9.12+...+1/30.33

=>3A=3/3.6+3/6.9+3/9.12+...+3/30.33

=>3A=1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33

=>3A=1/3-1/33

=>3A=10/33

=>A=10/33:3

=>A=10/99

Vậy 1/18+1/54+1/108+...+1/990=10/99

Các bạn hãy ủng hộ mik nha !!! Mik cảm ơn nhiều .

2 tháng 4 2017

\(\frac{989}{990}\)nha bạn 

tk mk nha ! mk nhanh nhất !