Xét vị trí tương đối của các đường thẳng sau đây:
d1 :12x – 6y + 10 = 0 ; d2 :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét Δ và d1, hệ phương trình: có vô số nghiệm (do các hệ số của chúng tỉ lệ nên Δ ≡ d1.
Xét Δ và d2, hệ phương trình: có nghiệm duy nhất (-1/5; 2/5) nên
Δ cắt d2 tại điểm M(-1/5; 2/5).
Xét Δ và d3, hệ phương trình: vô nghiệm
Vậy Δ // d3
Đường thẳng (d1) có vtpt và
d2 có vtpt
Hai đường thẳng này có
nên hai đường thẳng này song song với nhau.
Chọn A.
Cách 1: Dựa vào số nghiệm của hệ phương trình:
a) Xét hệ phương trình
Hệ phương trình có nghiệm duy nhất nên (d1) cắt (d2).
b) Xét hệ phương trình
Hệ phương trình trên vô nghiệm nên hai đường thẳng trên song song.
c) Xét hệ phương trình
Hệ phương trình trên có vô số nghiệm nên hai đường thẳng trùng nhau.
Cách 2: Dựa vào vị trí tương đối của các vectơ chỉ phương (hoặc vectơ pháp tuyến).
a) d1 nhận là một vectơ pháp tuyến
d2 nhận là 1 vtpt
Nhận thấy không cùng phương nên d1 cắt d2.
b) d1 nhận là 1 vtpt ⇒ d1 nhận là 1 vtcp
d2 nhận là 1 vtcp.
Nhận thấy cùng phương
⇒ d1 và d2 song song hoặc trùng nhau.
Xét điểm M(5;3) có:
M(5; 3) ∈ d2
12.5 – 6.3 + 10 = 52 ≠ 0 nên M(5; 3) ∉ d1.
Vậy d1 và d2 song song.
c) d1 nhận là 1 vtpt ⇒ d1 nhận là 1 vtcp.
d2 nhận là 1 vtcp.
Nhận thấy cùng phương
⇒ d1 và d2 song song hoặc trùng nhau.
Xét M(–6; 6) ∈ d2; M(–6; 6) ∈ d1 (Vì 8.(–6) + 10.6 – 12 = 0)
⇒ d1 và d2 trùng nhau.
Giao điểm (nếu có) của đường thẳng (d) và mp(α ) là nghiệm hệ phương trình:
Thay (1); (2); (3) vào (4) ta được:
1 + t + 3(2 – t) + 1 + 2t + 1 = 0
⇔ 0t + 9 = 0
Phương trình vô nghiệm
⇒ (d) không cắt (α).
Giao điểm (nếu có) của đường thẳng (d) và mp(α) là nghiệm hệ phương trình:
Thay (1); (2); (3) vào (4) ta được:
1 + t + 1 + 2t + 2 – 3t – 4 = 0
⇔ 0t = 0
Phương trình có vô số nghiệm
⇒ (d) ⊂ (α)
hay (d) cắt (α) tại vô số điểm.
Thay x, y, z trong phương trình tham số của d vào phương trình tổng quát của ( α ) ta được: (2 – t) +(2 + t) + 5 = 0 ⇔ 0t = -9
Phương trình vô nghiệm, vậy đường thẳng d song song với ( α )
Giao điểm (nếu có) của đường thẳng (d) và mp(α ) là nghiệm hệ phương trình:
Thay (1); (2); (3) vào (4) ta được:
3(12 + 4t) + 5(9 + 3t) – (1 + t) – 2 = 0
⇔ 36 + 12t + 45 + 15t – 1 – t – 2 = 0
⇔ 26t + 78 = 0
⇔ t = -3
Vậy (d) cắt (α) tại một điểm M(0 ; 0 ; -2).
Thay x, y, z trong phương trình tham số của đường thẳng d vào phương trình tổng quát của mặt phẳng ( α ) ta được: t + 2(1 + 2t) + (1 – t) – 3 = 0
⇔ 4t = 0 ⇔ t = 0
Vậy đường thẳng d cắt mặt phẳng ( α ) tại M 0 (0; 1; 1)
ta có: d1 :12x – 6y + 10 = 0 ;
d2= 2x – y – 7 = 0
D = 12 . (-1) -(-6).2 = -12 + 12 = 0
Dx = (-6) . (-7) – (-1). 10 = 42 + 10 = 52 ≠ 0
Vậy d1 // d2
ta có d1: 8x + 10y – 12 = 0
d2: 4x + 5y – 6 = 0
D = 8 . 5 – 4 . 10 = 0
Dx = 10. (-6) – (-12) . 5 = 0
Dy = (-12) . 4 – (-6) . 8 = 0
Vậy d1 trùng d2