cho (C) : y=\(\frac{2x^2+3x-2}{2x^2+2}\) . tìm giao điểm A,B của (C) và trục Ox. chứng minh rằng hai tiếp tuyến tại A,B vuông góc nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\alpha\) là góc tạo bởi đường thẳng y=2x+2 với trục Ox
y=2x+2
=>a=2
\(tan\alpha=a=2\)
=>\(\alpha\simeq63^026'\)
a) (C) có 2 tiệm cận xiên là x = -1 và y = x + 1
I là tâm đối xứng \(\Rightarrow I\left(-1;0\right)\) (I là giao của 2 tiệm cận)
Xét \(M\left(x_0;f\left(x_0\right)\right)\in\left(C\right)\). Tiếp tuyến \(\Delta\) tại M của (C) :
\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=\frac{x_0^2+2x_0}{\left(x_0+1\right)^2}\left(x-x_0\right)+\frac{x^2_0+2x_0+2}{x_0+1}\)
\(\Delta\) cắt tiệm cận đứng tại \(A\left(-1;\frac{2}{x_0+1}\right)\) và cắt tiệm cận xiên tại \(B\left(2x_0+1;2x_0+2\right)\)\(\begin{cases}\frac{x_A+x_B}{2}=x_0=x_M\\\frac{y_A+y_B}{2}=\frac{x_0^2+2x_0+2}{x_0+1}=y_M\end{cases}\)\(\Rightarrow\) M là trung điểm của ABGọi H là hình chiếu của B lên IA\(\Rightarrow BH=2\left|x_0+1\right|\) mà \(IA=\frac{2}{\left|x_0+1\right|}\) suy ra \(S_{\Delta ABI}=\frac{1}{2}BH.IA=2\) => điều cần chứng minh b) Ta có : \(AB^2=4\left[2\left(x+1\right)^2+\frac{1}{\left(x+1\right)^2}-2\right]\ge4\left(2\sqrt{2}-2\right)\Rightarrow AB\ge2\sqrt{2\sqrt{2}-2}\)Đẳng thức xảy ra \(\Leftrightarrow2\left(x_0+1\right)^4=1\Leftrightarrow x_0=-1\pm\frac{1}{\sqrt[4]{2}}\) c) Xét \(M\left(x_0;y_0\right)\in\left(C\right)\). Tiếp tuyến tại M vuông góc với tiệm cận xiên\(\Leftrightarrow y'\left(x\right)=-1\Leftrightarrow\frac{x^2_0+2x_0}{\left(x_0+1\right)^2}=-1\Leftrightarrow2x^2_0+4x_0+1=0\Leftrightarrow x_0=\frac{-2\pm\sqrt{2}}{2}\)Vậy \(M\left(\frac{-2\pm\sqrt{2}}{2};\pm\frac{3\sqrt{2}}{2}\right)\)Đáp án D.
Phương pháp:
Hàm số bậc nhất trên bậc nhất y = a x + b c x + d , a , c , a d − c d ≠ 0 có
TXĐ: x = − d c , T C N : y = a c .
Cách giải:
TXĐ: D = R \ 2
y = 2 x − 3 x − 2 C có 2 đường tiệm cận: x = 2 , y = 2
Ta có y ' = − 1 x − 2 2
Gọi M x 0 ; y 0 , x 0 ≠ 0 là tiếp điểm. Tiếp tuyến của (C) tại M có phương trình :
y = y ' x 0 x − x 0 + y 0 ⇔ y = − x − x 0 x 0 − 2 2 + 2 x 0 − 3 x 0 − 2 d
Cho
x = 2 ⇒ y = 1 x 0 − 2 + 2 x 0 − 3 x 0 − 2 = 2 x 0 − 2 x 0 − 2 ⇒ d
cắt TCĐ của (C) tại điểm
A 2 ; 2 x 0 − 2 x 0 − 2 .
Cho
x = 2 ⇒ 2 = − x − x 0 x 0 − 2 2 + 2 x 0 − 3 x 0 − 2 ⇔ 2 x 0 − 2 2 = − x + x 0 + 2 x 0 − 3 x 0 − 2
⇔ 2 x 0 2 − 8 x 0 + 8 = − x + x 0 + 2 x 0 2 − 7 x 0 + 6 ⇔ x = 2 x 0 − 2 ⇒ d
cắt TCN của (C) tại điểm
B 2 x 0 − 2 ; 2
Độ dài đoạn AB:
2 − 2 x 0 − 2 2 + 2 x 0 − 2 x 0 − 2 − 2 2 = 2 2 ⇔ 4 x 0 − 2 2 + 2 x 0 − 2 2 = 8
⇔ x 0 − 2 4 − 2 x 0 − 2 2 + 1 = 0 ⇔ x 0 − 2 2 − 1 2 = 0 ⇔ x 0 − 2 2 = 1
Hệ số góc của tiếp tuyến
y ' x 0 = − 1 x 0 − 2 2 = − 1 1 = − 1.
Cứ mỗi lần anh Lâm onl là ông đăng bài hỏi với tốc độ bàn thờ :v
a/ Hoành độ giao điểm của (C) với trục tung là \(x_0=0\)
\(y'=x^2-2x+2\)
\(\Rightarrow pttt:y-y_0=y'\left(x-x_0\right)\Leftrightarrow y=1+2x\)
b/ \(y'=x^2-2x+2\)
Goi \(M\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow k=y'=x_0^2-2x_0+2\)
Vi tiep tuyen vuong goc voi \(y=-\dfrac{1}{5}x+2\)
\(\Rightarrow k.k'=-1\Leftrightarrow\left(x_0^2-2x_0+2\right).\left(-\dfrac{1}{5}\right)=-1\Leftrightarrow x_0^2-2x_0+2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y_0=\dfrac{3^3}{3}-3^2+2.3+1=7\\y_0=-\dfrac{1}{3}-1-2+1=-\dfrac{7}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=7+5\left(x-3\right)\\y=-\dfrac{7}{3}+5\left(x+1\right)\end{matrix}\right.\)
P/s: Check lại số hộ mình ạ!
5y−3x=2xy−115y−3x=2xy−11
⇒2xy+3x−5y−11=0⇒2xy+3x−5y−11=0
⇒4xy+6x−10y−22=0⇒4xy+6x−10y−22=0
⇒(4xy+6x)−(10y+15)=7⇒(4xy+6x)−(10y+15)=7
⇒2x(2y+3)−5(2y+3)=7⇒2x(2y+3)−5(2y+3)=7
⇒(2x−5)(2y+3)=7⇒(2x−5)(2y+3)=7
Ta có các TH sau:
TH1: {2x−5=12y+3=7⇒{x=3y=2{2x−5=12y+3=7⇒{x=3y=2
TH2: {2x−5=−12y+3=−7⇒{x=2y=−5{2x−5=−12y+3=−7⇒{x=2y=−5
TH3: {2x−5=72y+3=1⇒{x=6y=−1{2x−5=72y+3=1⇒{x=6y=−1
TH4: {2x−5=−72y+3=−1⇒{x=−1y=−2{2x−5=−72y+3=−1⇒{x=−1y=−2
Vậy......................................
Tham khỏa tại: Đáp án đề thi vào lớp 10 môn Toán THPT chuyên Lê Quý Đôn - Khánh Hòa