Cho tam giác ABC cân tại A. Dường trung trực của AB cắt đường cao AH tại I. Lấy D thuộc AB, E thuộc AC sao cho AD=CE. Chứng minh:
a, IA=IC
b, ID=IE
Nếu có phần nào là 2 tg = nhau thì giúp mình giải rõ ra nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
ΔABC cân tại A có AH là đường cao
nên AH là trung trực của BC
I nằm trên trung trực của AB
=>IA=IB
I nằm trên trung trực của BC
=>IB=IC
=>IA=IC
b: IA=IC
=>góc IAC=góc ICA
=>góc ICE=góc IAD
Xét ΔIEC và ΔIDA có
CE=DA
góc ICE=góc IAD
IC=IA
=>ΔIEC=ΔIDA
=>IE=ID
a:Ta có: ΔABC cân tại A
mà AH là đường trung trực
nên AH là phân giác của góc BAC
b: Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chung
\(\widehat{MAI}=\widehat{NAI}\)
Do đó: ΔAMI=ΔANI
Suy ra: AM=AN; IM=IN
=>AI là đường trung trực của MN
=>AH là trung trực của MN
=>HM=HN
hay ΔHMN cân tại H
GT tam giác ABC cân
\(\widehat{A}< 90^o\)
\(BD\perp AC\left(D\in AC\right)\)
\(CE\perp AB\left(E\in AB\right)\)
BD và CE cắt nhau tại H
KL : BD = CD
tam giác BHC cân
AH là đường trung trực của BC
a) Xét tam giác BDC và tam giác CEB có
\(\widehat{BDC}=\widehat{CEB}=90^o\)
BC cạnh chung
\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )
=> tam giác BDC = tam giác CEB (g-c-g)
=> BD = CE ( 2 cạnh tương ứng )
b) Vì tam giác ABC là tam giác cân
=> \(\widehat{B}=\widehat{C}\)
Vì \(\widehat{B}=\widehat{C}\)
=> tam giác BHC cân
c) Kẻ AH
chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a. xét tam giác ABD và tam giác ACE có
BDA=CEA=90 độ
AB=AC (do tam giác ABC cân tai A)
Chung góc A
Suy ra: tam giác ABD= tam giác ACE
Suy ra: BD=CE (hai cạnh tương ứng)