Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Áp dụng định lí Pytago và tam giác ABC vuông tại A:
BC2=AB2+AC2
=>AC2=BC2-AB2=102-62=100-36=64
=> AC=\(\sqrt{64}=8cm\)
b/ Xét tam giác ABC và tam giác ADC có:
AC chung
góc BAC=DAC=90 độ
AD=AB(gt)
=> Tam giác ABC=tam giác ADC(c-g-c)
a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).
b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)
c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).
Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).
d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:
Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)
\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)
Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
Suy ra: CD⊥AC
b: Xét ΔCAE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAE cân tại C
c: Ta có: ΔCAE cân tại C
nên CA=CE
mà CA=BD
nên BD=CE
d: Xét ΔMAE có
MH là đường cao
MH là đường trung tuyến
Do đó: ΔMAE cân tại M
Xét ΔDEA có
EM là đường trung tuyến
EM=DA/2
Do đó: ΔDEA vuông tại E
hay AE⊥ED
a: BC=13cm
b: Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
c: Xét ΔNHA và ΔNIC có
NH=NI
\(\widehat{HNA}=\widehat{INC}\)
NA=NC
Do đó: ΔNHA=ΔNIC