B=(1.25.0,5:\(\frac{5}{8}\))+\(\frac{0,795:\frac{39}{40}.\frac{8008}{5}}{0,82-\frac{1}{50}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)có 9 p/số
\(=\frac{1}{10}.9=\frac{9}{10}\)
Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
\(=\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}+\)\(\frac{1}{10}\)
\(=\frac{1}{10}.9\)
\(=\frac{9}{10}\)
Đúng 100%
Đúng 100%
Đúng 100%
\(\frac{1}{10}+\frac{2}{20}+\frac{3}{30}+\frac{4}{40}+\frac{5}{50}+\frac{6}{60}+\frac{7}{70}+\frac{8}{80}+\frac{9}{90}\)
\(=\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}\)
\(=\frac{1}{10}\times9\)
\(=\frac{9}{10}\)
<=>\(\left(\frac{x}{1}+\frac{2x}{3}+\frac{3x}{5}+...+\frac{20x}{39}\right)+\left(\frac{1}{1}+\frac{3}{3}+\frac{5}{5}+...+\frac{39}{39}\right)=20+2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)<=>
\(\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right).x+20=20+2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)
<=> \(\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right).x=2.\left(\frac{1}{1}+\frac{2}{3}+\frac{3}{5}+...+\frac{20}{39}\right)\)<=> x = 2
(x+1) / 1 + (2x+3) / 3 + (3x+5) / 5+ ... + (20x + 39) / 39
= 22 + 4 /3 + 6 / 5 +... + 40 /39
<=> x+ 1+ 2x / 3 +1 + 3x / 5+1+...+20x / 39+1 = 22+4 / 3+6 / 5+8 / 7+...+38 / 37+40 / 39
<=> (1+2 / 3+3 / 5+4 / 7+...+19 / 37+20 / 39)x + 20 = 22+4/3+6/5+8/7+...+38/37+40/39
<=> (1+2/3+3/5+4/7+...+19/37+20/39)x = 2(1 + 2/3 + 3/5 + 4/7 +...+ 19/37 + 20/39)
<=> x = 2
Rút gọn từng phân số rồi sắp xếp lại như sau :
\(A=\left(40+\frac{3}{8}+\frac{5}{8^3}\right)+\left(\frac{7}{8^2}+\frac{4}{8^4}\right)\)
\(B=\left(40+\frac{3}{8}+\frac{5}{8^3}\right)+\left(\frac{5}{8^2}+\frac{5}{8^4}\right)\)
Rõ ràng để so sánh A với B chỉ cần so sánh \(\frac{7}{8^2}+\frac{4}{8^4}\) với \(\frac{5}{8^2}+\frac{5}{8^4}\) .
Ta có :
\(\frac{7}{8^2}+\frac{4}{8^4}=\left(\frac{5}{8^2}+\frac{4}{8^4}\right)+\frac{2}{8^2}\)
còn \(\frac{5}{8^2}+\frac{5}{8^4}=\left(\frac{5}{8^2}+\frac{4}{8^4}\right)+\frac{1}{8^4}\)
Do \(\frac{2}{8^2}>\frac{1}{8^4}\) nên \(\frac{7}{8^2}+\frac{4}{8^4}>\frac{5}{8^2}+\frac{5}{8^4}\) . Từ đó suy ra A > B.
\(\frac{8167}{5}\)=1633,4