hình thang abcd (ab//cd) có các tia phân giác của giác của góc a và góc d gặp nhau tại i thuộc cạnh bên bc. chứng minh ad bằng tổng hai đáy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB // CD => Góc IDC=Góc DIA ( so le trong )
Mà góc IDC=góc IDA ( do ID là tia phân giác góc ADC)
=> Góc DIA= Góc IDA => tam giác DIA cân tại A
=> AD = AI (1)
Ta có AB // CD => Góc DCI = Góc CIB (so le trong )
Mà góc DCI = góc ICB ( do IC là tia phân giác góc DCB)
=> Góc CIB = Góc ICB => tam giác CIB cân tại B
=> BC = BI (2)
Cộng (1) và (2) , vế theo vế .Ta được:
AD + BC = AI + BI
=> AD + BC = AB (đpcm)
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath. Em tham khảo link này nhé!
B) Kẻ MH vuông góc QP và NK vuông góc với QP ta có :
Ta có : MHK = NKH = 90 độ
=> MH // NK
=> Tứ giác MNKH là hình thang
Mà MHK = NKH = 90 độ
=> Tứ giác MNKH là hình thang cân
=> HMN = MNK = 90 độ
=> MNK = NKH = 90 độ
=> MN // HK
=> MN// QP
=> MNPQ là hình thang
Mà QMN = MNP (gt)
=> MNPQ là hình thang cân(dpcm)
Ko bt tớ làm đúng ko nếu sai đừng chửi mk nhé
Gọi M là giao điểm DI và AB
Ta có: AM//DC
=> \(\widehat{M}=\widehat{D_2}\)( sole trong) (1)
Mà \(\widehat{D_1}=\widehat{D_2}\)( DI là phân giác góc D)
=> \(\widehat{M}=\widehat{D_1}\)
=> Tam giác ADM cân
=> ID=IM (2)
Ta lại có: \(\widehat{I_1}=\widehat{I_2}\)( so le trong) (3)
Từ (1) , (2) => Tam giác IBM = tam giác ICD
=> BM=DC
Do vậy: AD=AM=AB+BM=AB+DC (AD=AM vì tam giác ADM cân)
a) Theo đề bài ta có: \(\widehat{DAF}+\widehat{ADF}=\frac{\widehat{DAB}+ADC}{2}=\frac{180^o}{2}=90^o\)
Xét tam giác AFD có \(\widehat{DAF}+\widehat{ADF}=90^o\) nên \(\widehat{AFD}=90^o\)
Hay tam giác AFD vuông tại F.
Gọi E là trung điểm AD.
Xét tam giác vuông ADF có FE là trung tuyến ứng với cạnh huyền nên EF = AD/2
Lại có do F là trung điểm BC; E là trung điểm AD nên EF là đường trung bình hình thang.
Từ đó suy ra \(EF=\frac{AB+BC}{2}\)
Vậy nên AD = AB + BC.
b) Giả sử AD = AE + ED.
Gọi E là trung điểm AD. Do AD = AB + CD nên FE = (AB + DC)/2
Ta có E là trung điểm AD. Vậy nên EF là đường trung bình hình thang hay hay Flà trung điểm BC.
Tham khảo : Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath