K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

=1/2 . 2/3 ....1999/2000

=1.2....1999/2.3...2000

1/2000

26 tháng 3 2016

 

B= 3/2.4/3. ....2001/2000

B = 3.4....2001/2.3....2000

B =2001/2

26 tháng 3 2016

vào câu hỏi tương tự nhé

26 tháng 3 2016

A = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ... . ( 1 - 1/2000)

A =  ( 2/2 - 1/2 ) . ( 3/3 - 1/3 ) . ( 4/4 - 1/4 ) . ... . ( 2000/2000 - 1/2000 )

A = 1/2 . 2/3 . 3/4 . ... . 1999/2000

A = 1.(2.3. ... . 1999)/ (2.3.4. ... .1999).2000

A = 1/2000

B = ( 1 + 1/2 ).(1 + 1/3 ).( 1+ 1/4 ). ... .(1+1/2000)

B = ( 2/2 + 1/2 ).(3/3+1/3).(4/4+1/4). ... .(1+1/2000)

B = 3/2.4/3.5/4. ... .2001/2000

B = (3.4.5. ... .2000).2001/2.(3.4. ... .2000)

B = 2001/2

B = 1000,5

11 tháng 10 2015

\(\frac{1}{n\sqrt{n+1}+\sqrt{n}\left(n+1\right)}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

sau đó tách ra là ok

7 tháng 8 2016

Ta có:

\(\frac{A}{B}=\frac{\frac{2000}{1}+\frac{1999}{2}+\frac{1998}{3}+...+\frac{1}{2000}+2000}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{\left(\frac{2000}{1}+1\right)+\left(\frac{1999}{2}+1\right)+\left(\frac{1998}{3}+1\right)+...+\left(\frac{1}{2000}+1\right)+2000+1}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{\frac{2001}{1}+\frac{2001}{2}+\frac{2001}{3}+...+\frac{2001}{2000}+2001}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=\frac{2001\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}\)

\(\Leftrightarrow\frac{A}{B}=2001\)

15 tháng 2 2020

bn cộng trên tử rồi thì phải trừ đi chứ ko phân số sẽ thay đổi

 

 

a: =6/36+1/3=1/6+1/3=1/6+2/6=3/6=1/2

b: =3/4-1/2=3/4-2/4=1/4

28 tháng 2 2022

\(a,\dfrac{3}{4}\times\dfrac{2}{9}+\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{2}{6}=\dfrac{3}{6}=\dfrac{1}{2}\\ b,\dfrac{1}{4}:\dfrac{1}{3}-\dfrac{1}{2}=\dfrac{1}{4}\times\dfrac{3}{1}-\dfrac{2}{4}=\dfrac{3}{4}-\dfrac{2}{4}=\dfrac{1}{4}\)

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right)\left(1-\frac{1}{2000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}=\frac{1.2.3...1998.1999}{2.3.4...1999.2000}=\frac{1}{2000}\)

1 tháng 8 2015

\(\left(1-\frac{1}{2}\right).\left(1.\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)

\(=1.\frac{1}{2000}\)

\(=\frac{1}{2000}\)

21 tháng 6 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1999}\right).\left(1-\frac{1}{2000}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{1998}{1999}.\frac{1999}{2000}\)(Rút gọn trên tử với dưới mẫu nhé)

\(=\frac{1}{2000}\)