K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

a)  . Tập xác định : R {} ;

              và  ;

          Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

         b) Tiệm cận đứng ∆ : x =  .

             A(-1 ; ) ∈ ∆ ⇔  = -1 ⇔ m = 2.

         c) m = 2 => .       

 

20 tháng 3 2016

hay

31 tháng 3 2017

a) . Tập xác định : R {} ;

;

Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Tiệm cận đứng ∆ : x = .

A(-1 ; ) ∈ ∆ ⇔ = -1 ⇔ m = 2.

c) m = 2 => .



14 tháng 9 2019

Với mọi tham số m ta có :

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

17 tháng 11 2018

Chọn C

30 tháng 6 2016

a)  . Tập xác định : R {} ;

              và  ;

          Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

         b) Tiệm cận đứng ∆ : x =  .

             A(-1 ; ) ∈ ∆ ⇔  = -1 ⇔ m = 2.

         c) m = 2 => .       

30 tháng 6 2016

a)  . Tập xác định : R {} ;

              và  ;

          Do đó hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

         b) Tiệm cận đứng ∆ : x =  .

             A(-1 ; ) ∈ ∆ ⇔  = -1 ⇔ m = 2.

         c) m = 2 => .      

21 tháng 11 2018

a) y = x 3  − (m + 4) x 2  − 4x + m

⇔ ( x 2  − 1)m + y − x 3  + 4 x 2  + 4x = 0

Đồ thị của hàm số (1) luôn luôn đi qua điểm A(x; y) với mọi m khi (x; y) là nghiệm của hệ phương trình:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải hệ, ta được hai nghiệm:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy đồ thị của hàm số luôn luôn đi qua hai điểm (1; -7) và (-1; -1).

b) y′ = 3 x 2  − 2(m + 4)x – 4

Δ′ = ( m + 4 ) 2  + 12

Vì Δ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

c) Học sinh tự giải.

d) Với m = 0 ta có: y = x 3  – 4 x 2  – 4x.

Đường thẳng y = kx sẽ cắt (C) tại ba điểm phân biệt nếu phương trình sau có ba nghiệm phân biệt:  x 3  – 4 x 2  – 4x = kx.

Hay phương trình  x 2  – 4x – (4 + k) = 0 có hai nghiệm phân biệt khác 0, tức là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

26 tháng 12 2020

2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được: 

\(\left(m^2-2m+3\right)\cdot2-4=8\)

\(\Leftrightarrow2m^2-4m+6-4-8=0\)

\(\Leftrightarrow2m^2-4m-6=0\)

\(\Leftrightarrow2m^2-6m+2m-6=0\)

\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)

\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)

a: Thay x=-1 và y=1 vào (d), ta được:

-(a-1)+a=1

=>-a+1+a=1

=>1=1(luôn đúng)

b: Thay x=0 và y=3 vào (d), ta được;

0(a-1)+a=3

=>a=3

=>y=2x+3

c: Thay x=-2 và y=0 vào (d), ta được;

-2(a-1)+a=0

=>-2a+2+a=0

=>2-a=0

=>a=2

21 tháng 8 2023
11 tháng 2 2017

Ta có:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 là tiệm cận đứng của đồ thị hàm số.

+ Tiệm cận đứng đi qua A 1 ; 2

⇔ Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇔ m = 2.

Vậy với m = 2 thì tiệm cận đứng của đồ thị đi qua A - 1 , 2