Tìm các số tự nhiên a và b sao cho: 10a+168=b2.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(2^a+154=5^b\left(a;b\inℕ\right)\)
-Ta thấy,chữ số tận cùng của \(5^b\) luôn luôn là chữ số \(5\)
\(\Rightarrow2^a+154\) có chữ số tận cùng là \(5\)
\(\Rightarrow2^a\) có chữ số tận cùng là \(1\) (Vô lý, vì lũy thừa của 2 là số chẵn)
\(\Rightarrow\left(a;b\right)\in\varnothing\)
b) \(10^a+168=b^2\left(a;b\inℕ\right)\)
Ta thấy \(10^a\) có chữ số tận cùng là số \(0\)
\(\Rightarrow10^a+168\) có chữ số tận cùng là số \(8\)
mà \(b^2\) là số chính phương (không có chữ số tận cùng là \(8\))
\(\Rightarrow\left(a;b\right)\in\varnothing\)
Bài 3 :
a) \(M=19^k+5^k+1995^k+1996^k\left(với.k.chẵn\right)\)
Ta thấy :
\(5^k;1995^k\) có chữ số tận cùng là \(5\) (vì 2 số này có tận cùng là \(5\))
\(\Rightarrow5^k+1995^k\) có chữ số tận cùng là \(0\)
mà \(1996^k\) có chữ số tận cùng là \(6\) (ví số này có tận cùng là số \(6\))
\(\Rightarrow5^k+1995^k+1996^k\) có chữ số tận cùng là chữ số \(6\)
mà \(19^k\left(k.chẵn\right)\) có chữ số tận cùng là số \(1\)
\(\Rightarrow M=19^k+5^k+1995^k+1996^k\) có chữ số tận cùng là số \(7\)
\(\Rightarrow M\) không thể là số chính phương.
b) \(N=2004^{2004k}+2003\)
Ta thấy :
\(2004k=4.501k⋮4\)
mà \(2004\) có chữ số tận cùng là \(4\)
\(\Rightarrow2004^{2004k}\) có chữ số tận cùng là \(6\)
\(\Rightarrow N=2004^{2004k}+2003\) có chữ số tận cùng là \(9\)
\(\Rightarrow N\) có thể là số chính phương (nên câu này bạn xem lại đề bài)
Ta thấy 225 là số lẻ nên 100a + 3b + 1 và 2a + 10a + b cũng là các số lẻ.
Do 100a + 3b + 1 là số lẻ mà 100a là số chẵn nên 3b là số chẵn tức b là só chẵn.
Kết hợp với 2a + 10a + b là số lẻ ta có 2a là số lẻ
\(\Leftrightarrow2^a=1\Leftrightarrow a=0\).
Khi đó: \(\left(3b+1\right)\left(b+1\right)=225\)
\(\Leftrightarrow\left(b-8\right)\left(3b+28\right)=0\Leftrightarrow b=8\) (Do b là số tự nhiên).
Vậy a = 0; b = 8.
B2 Gỉai
10x(a-5b) chia hết cho17
=>10xa-50xb chia hết cho17
10a-49b+b chia hết cho17
Vì 49b chia hết cho 17
=>10a-b chia hết cho17(dpcm)
(3a+2b).8+10a+b=24a+16a+10a+b=34a+17b chia hết cho 17
⇒(3a+2b).8+10a+b chia hết cho 17
Mà 3a+2b chia hết cho 17⇒(3a+2b).8 chia hết cho 17
⇒10a+b chia hết cho 17(đpcm)
b)Ta có :
xy+x-y=4
⇒x.(y+1)-(y+1)=3
⇒(x-1).(y+1)=3
Vì x,y ∈Z
⇒x-1,y+1∈Z
⇒x-1,y+1∈Ư(3)
Lập bảng giá trị
x -1 1 3 -1 -3
y+1 3 1 -3 -1
x 2 4 0 -2
y 2 0 -4 -2
Vậy cặp số (x,y) cần tìm là :
(2,2),(4,0),(0,-4),(-2,-2)
\(\left(3a+2b\right)⋮17\Leftrightarrow9\left(3a+2b\right)⋮17\Leftrightarrow\left(27a-17a+18b-17b\right)⋮17\)
\(\Leftrightarrow\left(10a+b\right)⋮17\)
\(\left(3a+2b\right)⋮17\Leftrightarrow13\left(3a+2b\right)⋮17\Leftrightarrow\left(39a-2.17a+26b-17b\right)⋮17\)
\(\Leftrightarrow\left(5a+9b\right)⋮17\)
3a+2b).8+10a+b=24a+16a+10a+b=34a+17b chia hết cho 17
⇒(3a+2b).8+10a+b chia hết cho 17
Mà 3a+2b chia hết cho 17⇒(3a+2b).8 chia hết cho 17
⇒10a+b chia hết cho 17(đpcm)
b)Ta có :
xy+x-y=4
⇒x.(y+1)-(y+1)=3
⇒(x-1).(y+1)=3
Vì x,y ∈Z
⇒x-1,y+1∈Z
⇒x-1,y+1∈Ư(3)
Lập bảng giá trị
x -1 1 3 -1 -3
y+1 3 1 -3 -1
x 2 4 0 -2
y 2 0 -4 -2
Vậy cặp số (x,y) cần tìm là :
(2,2),(4,0),(0,-4),(-2,-2)
Giải thích các bước giải:
xét a=0=>10a+168=1+168=169=132
=>a=0;b=2
xét a khác 0=>10a có tận cùng bằng 0
=>10a+168 có tận cùng bằng 8 không phải số chính phương
=>không có b
vậy a=0;b=2
Chia ra làm hai trường hợp
(+) TH1: a = 0
(+) TH2: a > 0 ( cái này laoij)