K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Đặt biểu thức trên là *

Với n=1 thì => * <=> 13=\(\frac{1^2\left(1+1\right)^2}{4}\left(đúng\right)\)

Giả sử * đúng vói n=k => * <=> 13+...+k3=\(\frac{k^2\left(k+1\right)^2}{4}\)

Cần c/m * cũng đúng với n=k+1

Thật vậy với n=k+1

=> * <=> 13 + ... + k3 + ( k + 1 )3=\(\frac{\left(k+1\right)^2.\left(k+2\right)^2}{4}\)

<=> \(\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k+1\right)^{2.}.\left(k+2\right)^2}{4}\Leftrightarrow\frac{k^2}{4}+k+1=\frac{\left(k+2\right)^2}{4}\)

<=> \(\frac{\left(k+2\right)^2}{4}=\frac{\left(k+2\right)^2}{4}\)

=> * đúng với n=k+1

Vậy * đúng với mọi số tự nhiên nϵN

18 tháng 3 2016

Sáng Ngọc quy nạp ak bạn!!

14 tháng 9 2016

b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)

d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)

15 tháng 9 2016

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

15 tháng 9 2016

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)

11 tháng 4 2019

\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)

\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)

\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)

\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)

\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)

Đến đây là tính dễ rồi :v

\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)

\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)

\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)

\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)

\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)

\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)

Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)

\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)

25 tháng 9 2018

Giúp mik với mn ơi

25 tháng 9 2018

1.\(\left(-\frac{6}{5}+\frac{6}{16}-\frac{6}{23}\right):\left(\frac{9}{5}-\frac{9}{16}+\frac{9}{23}\right)\)

\(=6\left(-\frac{1}{5}+\frac{1}{16}-\frac{1}{23}\right):\left(-9\right)\left(\frac{-1}{5}+\frac{1}{16}-\frac{1}{23}\right)\)

\(=6:\left(-9\right)=-\frac{2}{3}\)

2. \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{0.5-\frac{1}{3}+\frac{1}{4}}{-\frac{3}{2}+1-\frac{3}{4}}\)

\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{-3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}-\frac{1}{3}\)

\(=\frac{9}{13}-\frac{5}{15}=\frac{4}{15}\)

4 tháng 10 2021

yutyugubhujyikiu

18 tháng 12 2016

a) \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+0,5-\frac{36}{41}\)

= \(\frac{11}{24}-\frac{5}{41}+\frac{13}{24}+\frac{1}{2}-\frac{36}{41}\)

= \(\frac{1}{2}-\left\{\frac{11}{24}+\frac{13}{24}\right\}-\left\{\frac{5}{41}+\frac{36}{41}\right\}\)

=\(\frac{1}{2}-\frac{24}{24}-\frac{41}{41}\)

=\(\frac{1}{2}-1-1\)

=\(\frac{-3}{2}\)

b) \(-12:\left\{\frac{3}{4}-\frac{5}{6}\right\}^2\)

= \(-12:\left\{\frac{9}{12}-\frac{10}{12}\right\}^2\)

= \(-12:\left\{\frac{-1}{12}\right\}^2\)

= \(-12:\frac{1}{144}\)

= \(-12.144\)

= -1728

c) \(\frac{7}{23}.\left[\left(\frac{-8}{6}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left[\left(\frac{-24}{18}\right)-\frac{45}{18}\right]\)

= \(\frac{7}{23}.\left(\frac{-23}{6}\right)\)

= \(\frac{-7}{6}\)

d) \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}:\frac{5}{7}\)

= \(23\frac{1}{4}.\frac{7}{5}-13\frac{1}{4}.\frac{7}{5}\)

= \(\left\{23\frac{1}{4}-13\frac{1}{4}\right\}.\frac{7}{5}\)

= \(10.\frac{7}{5}\)

= 14

 

e) (1+2314).(0,834)2

= (1+2314).(\(\frac{4}{5}\)34)2

= \(\left(\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right).\left(\frac{16}{20}-\frac{15}{20}\right)^2\)

= \(\frac{17}{12}.\left(\frac{1}{20}\right)^2\)

= \(\frac{17}{20}.\frac{1}{400}\)

= \(\frac{17}{8000}\)

 

28 tháng 1 2020

a) ( -2.5 ) . ( 7,5) .( -4 )

= [(-2,5).(-4)].(7,5)

= 10 . 7,5

= 75

b) \(1\frac{4}{23}+\frac{8}{21}-\frac{4}{23}+0,6+\frac{13}{21}\)

=\(1\frac{4}{23}-\frac{4}{23}+\frac{8}{21}+\frac{13}{21}-0,6\)

\(=1+1-0,6\)

\(=2-0,6\)

= 1,4

c) \(\frac{2}{7}.15\frac{1}{3}-\frac{2}{7}.20.\frac{1}{3}+4\frac{1}{3}\)

\(=\frac{2}{7}.5-\frac{1}{3}.\frac{40}{7}+4\frac{1}{3}\)

\(=\frac{10}{7}-\frac{17}{7}\)

= -1

d) \(2\frac{1}{4}:\left(\frac{-3}{5}\right)-1\frac{1}{4}:\left(\frac{-3}{5}\right)\)

\(=\frac{9}{4}.\left( \frac{-5}{3}\right)-\frac{5}{4}.\left(\frac{-5}{3}\right)\)

=\(\left(\frac{-5}{3}\right).\left(\frac{9}{4}-\frac{5}{4}\right)\)

\(=\frac{-5}{3}.1\)

\(=\frac{-5}{3}\)

27 tháng 2 2018

Ta có : 

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)

\(=\)\(\frac{1}{100}\)