Cho tia Ox.Trên 2 nửa mặt phẳng đối nhau bờ là Ox, vẽ 2 tia Oy và Oz sao cho góc xOy=1200,góc xOz=1200.
CMR:
Tia đối của mỗi tia Ox,Oy,Oz là phân giác của góc hợp bởi 2 tia còn lại.
Cần gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Ta có : \(\widehat{xOt}+\widehat{xOy}=180^o\) ( 2 góc kề bù )
\(=>\widehat{xOt}=180^o-\widehat{xOy}=180^o-120^o=60^o\)
Ta có : \(\widehat{zOt}+\widehat{xOz}=180^o\) ( 2 góc kề bù )
\(=>\widehat{zOt}=180^o-\widehat{xOz}=180^o-120^o=60^o\)
Ta có : \(\widehat{yOz}=\widehat{yOt}+\widehat{zOt}\) ( tia Ot nằm giữa 2 tia Oy và Oz )
\(=>\widehat{yOz}=60^o+60^o=120^o\) ( 1 )
Ta có : \(\widehat{xOy}=120^o\left(gt\right)\) ( 2 )
: \(\widehat{xOz}=120^o\left(gt\right)\) ( 3 )
Từ ( 1 ) , ( 2 ) vả ( 3 ) suy ra \(\widehat{xOy}=\widehat{xOz}=\widehat{yOz}=120^o\)
b )
Gọi : Ot là tia đối của Ox
: Ov là tia đối của Oy
: Ou là tia đối của Oz
Ta có : \(\widehat{yOt}=\widehat{zOt}=60^o\left(cmt\right)\)
= > Ot là tia phân giác của \(\widehat{yOz}\) ( 4 )
Ta có : \(\widehat{xOy}+\widehat{xOv}=180^o\) ( 2 góc kề bù )
\(=>\widehat{xOv}=180^o-\widehat{xOy}=180^o-120^o=60^o\) ( 5 )
Ta có : \(\widehat{xOz}=\widehat{zOv}+\widehat{xOv}\) ( tia Ov nằm giữa 2 tia Ox và Oz )
\(=>\widehat{zOv}=\widehat{xOz}-\widehat{xOv}=120^o-60^o=60^o\) ( 6 )
Từ ( 5 ) vả ( 6 ) suy ra : Ov là tia phân giác của \(\widehat{xOz}\) ( 7 )
Ta có : \(\widehat{xOu}+\widehat{xOz}=180^o\) ( 2 góc kề bù )
\(=>\widehat{xOu}=180^o-\widehat{xOz}=180^o-120^o=60^o\) ( 8 )
Ta có : \(\widehat{xOy}=\widehat{yOu}+\widehat{xOu}\) ( tia Ou nằm giữa 2 tia Oy và Ox )
\(=>\widehat{yOu}=\widehat{xOy}-\widehat{xOu}=120^o-60^o=60^o\) ( 9 )
Từ ( 8 ) vả ( 9 ) suy ra : Ou là tia phân giác của \(\widehat{xOy}\) ( 10 )
Từ ( 4 ) , ( 7 ) vả ( 10 ) suy ra : tia đối của mỗi tia Ox , Oy , Oz là tia phân giác của góc hợp bởi 2 tia còn lại
HỌC TỐT !!!
a) Ta có: \(\widehat{xOy}+\widehat{yOz}+\widehat{xOz}=360^0\)
\(\Leftrightarrow120^0+120^0+\widehat{yOz}=360^0\)
hay \(\widehat{yOz}=120^0\)
\(\Leftrightarrow\widehat{xOy}=\widehat{yOz}=\widehat{xOz}\)(đpcm)