Một số chia 8 dư 7, chia 125 dư 4. Tìm số đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: Aabc =A.1000+abc
vì 1000 chia hết cho 125 và 8
nên tính chất của Aabc đối với 125 và 8
phụ thuộc vào ba số cuối abc
theo bài gia ta có
(abc-4) chia hết cho 125
=>(abc-4) có tận cùng là 5 hoặc 0
=> abc có tân cùng là 9 hoặc 4 (1)
(abc-7) chia hết cho 8
=> (abc-7) chẵn
=> abc lẻ (2)
Từ (1) và (2) suy ra c=9
ta có ab9-4=ab5=125.k (với 0<k<8)
Lại có ab9-7 chia hết cho 8
Suy ra ab5-3 chia hết cho 8
<=>125.k-3 chia hết cho 8
<=>(128k-3k-3) chia hết cho 8
<=>128k-3(k+1) chia hết cho 8
<=>3(k+1) chia hết cho 8 (vì 128k chia hết cho 8)
<=>k+1 chia hết cho 8 (vì 3 chia 3 dư 3)
<=>k=7 (vì 0<k<8)
Suy ra số cần tìm là 125.k+4=125.7+4=879
Ai tích mình mình tích lại cho
Ta có: Aabc =A.1000+abc
vì 1000 chia hết cho 125 và 8
nên tính chất của Aabc đối với 125 và 8
phụ thuộc vào ba số cuối abc
theo bài gia ta có
(abc-4) chia hết cho 125
=>(abc-4) có tận cùng là 5 hoặc 0
=> abc có tân cùng là 9 hoặc 4 (1)
(abc-7) chia hết cho 8
=> (abc-7) chẵn
=> abc lẻ (2)
Từ (1) và (2) suy ra c=9
ta có ab9-4=ab5=125.k (với 0<k<8)
Lại có ab9-7 chia hết cho 8
Suy ra ab5-3 chia hết cho 8
<=>125.k-3 chia hết cho 8
<=>(128k-3k-3) chia hết cho 8
<=>128k-3(k+1) chia hết cho 8
<=>3(k+1) chia hết cho 8 (vì 128k chia hết cho 8)
<=>k+1 chia hết cho 8 (vì 3 chia 3 dư 3)
<=>k=7 (vì 0<k<8)
Suy ra số cần tìm là 125.k+4=125.7+4=879
879 chia 1000 dư 879
Gọi số cần tìm là x.
Ta có:x chia cho 8 dư 7\(\Rightarrow\left(x+7\right)⋮8\Leftrightarrow x=8m+7\)
x chia cho 125 dư 4\(\Rightarrow\left(x+4\right)⋮125\Leftrightarrow x=125n+4\)
Vì x=x nên ta có \(8m+7=125n+4\)
\(8m+7=8n+117n+4\)
\(8\left(m-n\right)+7-4=117n\)
\(8\left(m-n\right)+3=117n\)
\(8\left(m-n\right)=\left(117n-3\right)\)
\(\left(117n-3\right)\inƯ\left(8\right)\)
Vì x nhỏ nhất nên ........
Ghép điều kiện vào rồi tính.
số đó là 879
Ta có: Aabc =A.1000+abc
vì 1000 chia hết cho 125 và 8
nên tính chất của Aabc đối với 125 và 8
phụ thuộc vào ba số cuối abc
theo bài gia ta có
(abc-4) chia hết cho 125
=>(abc-4) có tận cùng là 5 hoặc 0
=> abc có tân cùng là 9 hoặc 4 (1)
(abc-7) chia hết cho 8
=> (abc-7) chẵn
=> abc lẻ (2)
Từ (1) và (2) suy ra c=9
ta có ab9-4=ab5=125.k (với 0<k<8)
Lại có ab9-7 chia hết cho 8
Suy ra ab5-3 chia hết cho 8
<=>125.k-3 chia hết cho 8
<=>(128k-3k-3) chia hết cho 8
<=>128k-3(k+1) chia hết cho 8
<=>3(k+1) chia hết cho 8 (vì 128k chia hết cho 8)
<=>k+1 chia hết cho 8 (vì 3 chia 3 dư 3)
<=>k=7 (vì 0<k<8)
Suy ra số cần tìm là 125.k+4=125.7+4=879