K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

phương trình  \(\Leftrightarrow\)    \(\left(m^2+1\right)x=-2m\)          \(\Leftrightarrow\)         \(x=-\frac{2m}{m^2+1}\)

đây là nghiệm duy nhất cần tìm 

21 tháng 3 2022

a, \(\Delta'=\left(m-1\right)^2-\left(-2m+5\right)=m^2-2m+1+2m-5=m^2-4\)

Để pt vô nghiệm thì \(m^2-4< 0\Leftrightarrow-2< m< 2\)

Để pt có nghiệm kép thì \(m^2-4=0\Leftrightarrow m=\pm2\)

Để pt có 2 nghiệm phân biệt thì \(m^2-4>0\Leftrightarrow\left[{}\begin{matrix}m< -2\\m>2\end{matrix}\right.\)

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-2m+5\end{matrix}\right.\)

\(a,ĐKXĐ:x_1,x_2\ne0\\ \dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=2\\ \Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m-2\right)^2-4\left(-2m+5\right)=0\\ \Leftrightarrow4m^2-8m+4+8m-20=0\\ \Leftrightarrow4m^2-16=0\\ \Leftrightarrow m=\pm2\)

\(b,x_1+x_2+2x_1x_2\le6\\ \Leftrightarrow2m-2+2\left(-2m+5\right)\le6\\ \Leftrightarrow2m-2-4m+10-6\le0\\ \Leftrightarrow-2m+2\le0\\ \Leftrightarrow m\ge1\)

 

19 tháng 8 2018

Ta có :

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)

- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)

- Nếu \(m=2\) thì \(0x=16\)

=> P/trình vô nghiệm . 

- Nếu \(m=-2\) thì \(0x=0\)

=> PT có nghiệm bất kì 

.....

20 tháng 8 2018

\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)

\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)

\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)

\(\Leftrightarrow m^2x-4x=m^2+4m+4\)

\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)

+) Nếu  \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

 Phương trình có nghiệm duy nhất  \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)

+) Nếu  \(m=2\)

\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)

         \(\Leftrightarrow0=16\) ( vô lí )

\(\Rightarrow\)Phương trình trên vô nghiệm

+) Nếu  \(m=-2\)

\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)

\(\Leftrightarrow0=0\)( đúng )

\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x 

Vậy : - Nếu  \(m\ne\pm2\)phương trình có nghiệm duy nhất  \(x=\frac{m+2}{m-2}\)

         - Nếu m = 2 thì phương trình vô nghiệm

         - Nếu m = -2 thì phương trình có nghiệm đúng với mọi x 

24 tháng 1 2017

a) \(\frac{\left(x+m\right)}{x-5}+\frac{\left(x+5\right)}{x-m}=2\)

<=> \(\frac{\left(x+m\right)\left(x-m\right)}{\left(x-5\right)\left(x-m\right)}+\frac{\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)

<=>\(\frac{\left(x+m\right)\left(x-m\right)+\left(x+5\right)\left(x-5\right)}{\left(x-5\right)\left(x-m\right)}=2\)

<=>\(\frac{x^2-m^2+x^2-5^2}{\left(x-m\right)\left(x-5\right)}=2\)

<=>2(x-m)(x-5)=2x2-m2-25

Thay m=2, ta có:

2(x-2)(x-5)=2x2-22-25

2x2-14x+20=2x2-29

20+29=2x2-2x2+14x

49=14x

=>x=3,5

Các câu sau cũng tương tự, dài quá không hi

17 tháng 3 2020

a) 7(m-11)x-2x+14=5m

<=> 7xm -77x-2x+14=5m

<=> 7xm-79x=5m-14

<=> (7m-79)x=5m-14

* Biện luận pt:

+) Nếu 7m-79=0 <=> m=\(\frac{79}{7}\)<=> 0x=\(\frac{297}{7}\) ( vô lý)

+) Nếu 7m-79\(\ne0\)<=> x=\(\frac{5m-14}{7m-79}\)

Vậy :

Nếu m=\(\frac{79}{7}\) thì pt vô nghiệm.

Nếu m\(\ne\) \(\frac{79}{7}\) thì S = \(\left\{\frac{5m-14}{7m-79}\right\}\)

b) 2xm + 4(2m+1)= m2+ 4 (x-1)

<=> 2xm + 8m + 4= m2+4x-4

<=> 2xm+8m+4-m2-4x+4=0

<=> (2m-4)x -m2+8m+8=0

<=> (2m-4)x=m2-8m-8

*Biện luận:

+) Nếu 2m-4=0 <=> m=2 <=> 0x=-20 (vô lý ) => pt vô nghiệm.

+) Nếu 2m-4 \(\ne0\) <=> x=\(\frac{m^2-8m-8}{2m-4}\)

Vậy :

Nếu m=2 => pt vô nghiệm

Nếu m\(\ne2=>S=\left\{\frac{m^2-8m-8}{2m-4}\right\}\)

24 tháng 1 2017

d)

\(x\ne a,x\ne b\)

đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)

\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)

Vậy: \(a\ne b\) Pt vô nghiệm

a=b phương trinhg nghiệm với mọi x khác a, b

25 tháng 1 2017

cảm ơn bạn nha

12 tháng 4 2020

ĐKXĐ: x khác 0

-Khi \(x\ge-m\), PT trở thành

\(\frac{m^2-2m\left(x+m\right)}{x}=x\)

\(\Leftrightarrow m^2-2mx-2m^2=x^2\)

\(\Leftrightarrow-m^2-2mx-x^2=0\)

\(\Leftrightarrow\left(m+x\right)^2=0\)

\(\Leftrightarrow x=-m\) (a)

Đề (a) là nghiệm thì x khác 0 hay m khác 0

-Với \(x< -m\), PT trở thành:

\(\frac{m^2+2m\left(x+m\right)}{x}=x\)

\(\Leftrightarrow3m^2+2mx-x^2=0\)

\(\Leftrightarrow4m^2-\left(m-x\right)^2=0\)

\(\Leftrightarrow\left(m-x\right)\left(3m-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=m\\x=3m\end{matrix}\right.\)

10 tháng 5 2016

a. \(\frac{mx+5}{10}\)\(\frac{x+m}{4}\)=\(\frac{m}{20}\)

\(\frac{2mx+10}{20}\)\(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)

2mx +10 + 5x +5m =m

x(2m+5)= -4m -10(1)

* 2m+5= 0 => m=-5/2

(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm

* 2m+5 \(\ne\)0=> m\(\ne\)-5/2

pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2

vậy với m=-5/2 phương trình đã cho vô số nghiệm

m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2

 

10 tháng 5 2016

b.(m+2)x+ 4(2m+1)= \(m^2\)+4(m-1)

(m+2)x= \(m^2\)+ 4m-4-8m -4

(m+2)x=\(m^2\)-4m-8(1)

* với m+2=0 => m=-2

pt(1)<=> 0x=4

vậy phương trinh đã cho vô nghiệm

* với m+2\(\ne\)0=> m\(\ne\)-2

phương trình đã cho có nghiệm duy nhất là x=( \(m^2\)-4m-8):(m-2)

22 tháng 5 2018

a) ( m - 2)x ≥ ( 2m - 1)x - 3

⇔ mx - 2x ≥ 2mx - x - 3

⇔ mx - 2mx + x - 2x ≥ - 3

⇔ - mx - x ≥ - 3

⇔ x( m + 1) ≤ 3 ( 1)

*) Với : m > - 1 , ta có :

( 1) ⇔ x ≤ \(\dfrac{3}{m+1}\)

*) Với : m < - 1 , ta có :

( 1) ⇔ x ≥ \(\dfrac{3}{m+1}\)

*) Với : m = -1 , ta có :

( 1) ⇔ 0x ≤ 3 ( luôn đúng )

KL....

22 tháng 5 2018

b) \(\dfrac{m\left(x-2\right)}{6}+\dfrac{x-m}{3}>\dfrac{x+1}{2}\)

⇔ m( x - 2) + 2( x - m) > 3( x + 1)

⇔ mx - 2m + 2x - 2m > 3x + 3

⇔ mx - x > 4m + 3

⇔ x( m - 1) > 4m + 3 ( 2)

*) Với : m > 1 , ta có :

( 2) ⇔ x > \(\dfrac{4m+1}{m-1}\)

*) Với : m < 1 , ta có :

( 2) ⇔ x < \(\dfrac{4m+1}{m-1}\)

*) Với : m = 1 , ta có :

( 2) ⇔ 0x > 7 ( vô lý )

KL...