Cho tam giác ABC có AB=AC và tia phân giác góc A cắt BC tại H
a. CMR: 2 tam giac AHB = AHC
b. CMR: AH vuong goc voi BC
c. Ve HD vuong goc voi AB, HE vuong goc voi AC. CMR: DE song song voi BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
= (gt)
AH là cạnh chung
=>
b) Từ câu a) => =(2 góc tương ứng) (*)
Ta có: + =180 độ (**)
Từ (*) và (**) => = ==90 độ
Vậy AHBC
c) Từ câu a)=> = (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:=180 độ - -
=180 độ - -
Mà = (cmt)
=>=
=>(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét và
AD=AE (cmt)
=(gt)
AH là cạnh chung
=>=(c.g.c)
=>===90(tương tự câu b)
=>AHDE
Vì DE AH;BCAH,Vậy DE song song BC
@FG★Ĵ❍ƙĔŔᵛᶰ chép mạng lỗi bài kìa,lần sau ghi nguồn vô nhá:)))
a) Xét tam giác AHB và tam giác AHC:
AB=AC(gt)
\(\widehat{BAH}\) =\(\widehat{CAH}\) (gt)
AH là cạnh chung
=>\(\Delta AHB=\Delta AHC\)
b) Từ câu a) =>\(\widehat{AHB}\) =\(\widehat{AHC}\)(2 góc tương ứng) (*)
Ta có:\(\widehat{AHB}\) + \(\widehat{AHC}\) =180 độ (**)
Từ (*) và (**) =>\(\widehat{AHB}\) =\(\widehat{AHC}\) =\(\frac{180}{2}\)=90 độ
Vậy AH\(⊥\)BC
c) Từ câu a)=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng);BH=HC(2 cạnh tương ứng)
Ta có:\(\widehat{DHB}\)=180 độ -\(\widehat{BDH}\) -\(\widehat{DBH}\)
\(\widehat{EHC}\)=180 độ -\(\widehat{HEC}\) -\(\widehat{ECH}\)
Mà \(\widehat{B}\)=\(\widehat{C}\) (cmt)
=>\(\widehat{DHB}\)=\(\widehat{EHC}\)
=>\(\Delta DHB=\Delta EHC\)(g.c.g)
=>DB=EC
Ta có:AD=AB-BD
AE=AC-EC
Mà BD=EC;AB=AC
=>AD=AE
Xét \(\Delta ADI\) và \(\Delta AEI\)
AD=AE (cmt)
\(\widehat{DAI}\)=\(\widehat{EAI}\)(gt)
AH là cạnh chung
=>\(\Delta ADI\)=\(\Delta AEI\)(c.g.c)
=>\(\widehat{AID}\)=\(\widehat{AIE}\)=\(\frac{180}{2}\)=90(tương tự câu b)
=>AH\(⊥\)DE
Vì DE\(⊥\) AH;BC\(⊥\)AH,Vậy DE song song BC
hình tự vẽ nha bn ^^
a) tam giác ABH và tam giác ÁCH có
AH=AH
Góc A1=góc A2 (pg góc A)
AB=AC (gt)
=> tam giác AHB=tam giác AHC (c-g-c)
b) ta có AB=AC=> tam giác ABC cân tại A
tam giác ABC cân tại A có AH là pg (gt)
=> AH là đường cao
=> AH vuông góc với BC
c) tam giác DBH vuông và tam giác ECH vuông có
HB=HC ( tam giác ABC cân tại A có AH là pg=> AH là trung tuyến)
góc ABC=góc ACB
=> tam giác DBH =tam giác ECH (ch-gn)
=> DB=EC
cộng đoạn thẳng => AD=AE=> tam giác ADE cân tại A
tam giác ADE cân tại A có AH là pg => AH là đường cao=> AH vuông góc DE (1)
mà AH vuông góc BC (cmt) (2)
từ (1),(2) => DE song song BC
a: \(\widehat{AEK}=\widehat{ABC};\widehat{AKE}=\widehat{ACB}\)
b: AH\(\perp\)BC
EK//BC
Do đó: AH\(\perp\)EK
hình tự vẽ
a, Xét tam giác AHB và AHC
AB=AC(đề bài)
góc BAH=HAC(AH là tia phân giác góc BAC)
AH là cạnh chung
=> tam giác AHB=AHC(C.G.C)
b,Vì tam giác AHB=AHC(câu a)
=> góc BHA=góc AHC( 2 cạnh tương ứng)
Mà BHA+ AHC=180 độ(2 góc kề bù)
=> BHA=AHC=1/2*180 độ
= 90 độ
=> AH vuông góc với BC.