cho a, b e N thỏa mãn
7 < a < b < 12
tính a+b, a.b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2+b^2-2ab+2a-2b=63\)
\(\Leftrightarrow\left(b-a\right)^2-2\left(b-a\right)-63=0 \)
\(\Leftrightarrow\left(b-a\right)^2-9\left(b-a\right)+7\left(b-a\right)-63=0\)
\(\Leftrightarrow\left(b-a\right)\left(b-a-9\right)+7\left(b-a-9\right)=0\)
\(\Leftrightarrow\left(b-a-9\right)\left(b-a+7\right)=0\)
\(\Leftrightarrow b-a-9=0\) hoặc \(b-a+7=0\)
\(\Leftrightarrow b-a=9\) hoặc \(b-a=-7\left(l\right)\) vì b > a
\(79< 80< 81< 82\); chỉ có 2 số 80;81 ứng với a;b
Do đó b=81
Ta thấy: \(79< a< b< 82\)
Suy ra: khoảng giữa chỉ có 2 số thích hợp để điền là \(80\text{và}81\)
Nhưng phải xếp theo thứ tự nên ta điền vào như sau:
\(79< 80< 81< 82\)(đúng)
Vậy: \(a=80,b=81\)
(Nhớ k cho mình với nhé!)
Bài 1)
Áp dụng BĐT Bunhiacopxki ta có:
\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)
Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)
\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)
Bài 2)
Ta thấy:
\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)
\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)
Dấu bằng xảy ra khi \(ac=bd=\pm 1\) và \(cd=1\) ....
Bài 3)
Vế đầu:
\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)
Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)
BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.
Vế sau:
\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)
\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)
Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$
Dấu bằng xảy ra khi $a=b=c$
\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)
\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)
\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)
\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)
\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)
Lời giải:
Áp dụng BĐT AM-GM:
$ab^2-a^2b=ab(b-a)\leq a(1-a)\leq (\frac{a+1-a}{2})^2=(\frac{1}{2})^2=\frac{1}{4}$
Ta có đpcm
Giá trị này đạt tại $b=1; a=\frac{1}{2}$
ta có
a<b<c=>3a<a+b+c
d<m<n=>3d<d+m+n
=>3a+3d<a+b+c+d+m+n
=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n
=>3(a+d)/a+b+c+d+m+n)<1
=>a+d/a+b+c+d+m+n<1/3 (đpcm)
copy
a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)
\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}<\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)
=>đpcm
7<a<b<12
=>a\(\in\){8;9;10}
b\(\in\){9;10;11}
=>a+b\(\in\){17;18;19;20;21}
a.b\(\in\){72;80;81;90;99;100;110}