Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 1≥ a,b,c≥0 ta co:
\((1-a^2)(1-b)+(1-b^2)(1-c)+(1-c^2)(1-a) ≥ 0\)
<=> \(3+a^2b+b^2c+c^2a ≥ a^2+b^2+c^2+a+b+c\)(1)
Lai co: \(a^2(1-a)+b^2(1-b)+c^2(1-c)+a(1-a^2)+b(1-b^2)+c(1-c^2) ≥ 0\)
<=> \(a^2+b^2+c^2+a+b+c ≥ 2(a^3+b^3+c^3)\)(2)
Tu (1) va (2) suy ra \(3+a^2b+b^2c+c^2a ≥ 2(a^3+b^3+c^3)\)
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
Ta có:
\(\left(1-a^2\right)\left(1-b\right)>0\)
\(\Leftrightarrow1+a^2b>a^2+b>a^3+b^3\left(1\right)\)
(Vì \(0< a,b< 1\))
Tương tự ta có:
\(\hept{\begin{cases}1+b^2c>b^3+c^3\left(2\right)\\a+c^2a>c^3+a^3\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(2\left(a^3+b^3+c^3\right)< 3+a^2b+b^2c+c^2a\)
Lời giải:
Áp dụng BĐT AM-GM:
$A=a^2b^2(a^2+b^2)$
$4A=2ab.2ab(a^2+b^2)\leq \left(\frac{2ab+2ab+a^2+b^2}{3}\right)^3$
$=[\frac{(a+b)^2+2ab}{3}]^3=(\frac{16+2ab}{3})^3$
Mà:
$2ab\leq 2(\frac{a+b}{2})^2=2(\frac{4}{2})^2=8$
$\Rightarrow 4A\leq (\frac{16+8}{3})^3=512$
$\Rightarrow A\leq 128$
Dấu "=" xảy ra khi $a=b=2$
Lời giải:
Áp dụng BĐT AM-GM:
$ab^2-a^2b=ab(b-a)\leq a(1-a)\leq (\frac{a+1-a}{2})^2=(\frac{1}{2})^2=\frac{1}{4}$
Ta có đpcm
Giá trị này đạt tại $b=1; a=\frac{1}{2}$