cho hàm \(\frac{2x-2}{x+1}\)(C)
tìm m để đường thẳng d: y=2x+m cắt đồ thị (C) tại 2 điểm phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm: m x - 1 x + 2 = 2 x - 1 ( 1 )
Điều kiện: x ≠ - 2 Khi đó
(1) Suy ra: mx-1=(2x-1) (x+2) hay 2x2-(m-3)x-1=0 (2)
Đường thẳng d cắt (C) tại hai điểm phân biệt A; B khi và chỉ khi (1) có hai nghiệm phân biệt khi và chỉ khi ( 2) có hai nghiệm phân biệt khác -2
⇔ ∆ = [ - ( m - 3 ) ] 2 + 8 > 0 8 + 2 m - 6 - 1 ≠ 0 ⇔ m ≠ - 1 2 ( * )
Đặt A( x1; 2x1-1); B( x2; 2x2-1) với x1; x2 là hai nghiệm của phương trình (2).
Theo định lý Viet ta có
x 1 + x 2 = m - 3 2 x 1 x 2 = - 1 2 , k h i đ ó
A B = ( x 1 - x 2 ) 2 + 4 ( x 1 - x 2 ) 2 = 10 ⇔ 5 [ ( x 1 + x 2 ) 2 - 4 x 1 x 2 ] = 10 ⇔ ( m - 3 2 ) 2 + 2 = 2 ⇔ m = 3
thỏa (*).
Vậy giá trị m cần tìm là m =3.
Đáp án C
Để (C) cắt d tại 2 điểm phân biệt có hoành độ dương thì PT f(x) = 0 có 2 nghiệm dương phân biệt khác 3
Phương trình hoành độ giao điểm của (C) và d là:
x + 1 x - 1 = 2 x + m ⇔ x ≠ 1 f x = 2 x 2 + m - 3 - m - 1
Ta có
∆ = m 2 + 2 m + 7 > 0 ∀ m f 1 = - 2 ≠ 0
=> d luôn cắt tại hai điểm phân biệt A, B.
Gọi x 1 ; x 2 lần lượt là hoành độ các điểm A, B. Khi đó A O B ⏞ nhọn.
⇔ cos A O B ⏞ = O A 2 + O B 2 - A B 2 2 . O A . O B > 0 ⇔ O A 2 + O B 2 > A B 2 ⇔ x 1 2 + 2 x 1 + m 2 + x 2 2 + 2 x 2 + m 2 > 5 x 2 - x 1 2
Sử dụng định lí Viet và giải bất phương trình theo m ta thu được m > 5
Đáp án C
khó
thế ms hỏi