Giải phương trình sau: 8/x-8+11/x-11=9/x-9+10/x-10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)<=> \(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
<=>\(\frac{8+x-8}{x-8}+\frac{11+x-11}{x-11}=\frac{9+x-9}{x-9}+\frac{10+x-10}{x-10}\)
<=>\(\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
<=>\(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=>\(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
=>\(\orbr{\begin{cases}x=0\\\frac{1}{x-8}+\frac{1}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\end{cases}}\)
đến đoạn bạn giải tiếp nhé
\(\frac{x+5}{13}+\frac{x+6}{12}+\frac{x+7}{11}=\frac{x+8}{10}+\frac{x+9}{9}+\frac{x+10}{8}\)
\(\Leftrightarrow\left(\frac{x+5}{13}+1\right)+\left(\frac{x+6}{12}+1\right)+\left(\frac{x+7}{11}+1\right)=\left(\frac{x+8}{10}+1\right)+\left(\frac{x+9}{9}+1\right)+\left(\frac{x+10}{8}\right)\)
\(\Leftrightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}=\frac{x+18}{10}+\frac{x+18}{9}+\frac{x+18}{8}\)
ta chuyển về vế trái được
\(\Leftrightarrow\left(x+18\right)\left(\frac{1}{13}+\frac{1}{122}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
\(\Leftrightarrow x+2018=0\)(do cái còn lại khác 0)
\(\Leftrightarrow x=-2018\)
mình nghĩ đề cậu viết thiếu mình sửa rồi
Ta có:
\(\frac{x+5}{13}+\frac{x+6}{12}+\frac{x+7}{11}=\frac{x+8}{10}+\frac{x+9}{9}+\frac{x+10}{8}\)
\(\Rightarrow\left(\frac{x+5}{13}+1\right)+\left(\frac{x+6}{12}+1\right)+\left(\frac{x+7}{11}+1\right)=\left(\frac{x+8}{10}+1\right)+\left(\frac{x+9}{9}+1\right)+\left(\frac{x+10}{8}+1\right)\)
\(\Rightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}=\frac{x+18}{10}+\frac{x+18}{9}+\frac{x+18}{8}\)
\(\Rightarrow\frac{x+18}{13}+\frac{x+18}{12}+\frac{x+18}{11}-\frac{x+18}{10}-\frac{x+18}{9}-\frac{x+18}{8}=0\)
\(\Rightarrow\left(x+18\right)\times\left(\frac{1}{13}+\frac{1}{12}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\right)=0\)
Vì \(\frac{1}{13}+\frac{1}{12}+\frac{1}{11}-\frac{1}{10}-\frac{1}{9}-\frac{1}{8}\ne0\)
\(\Rightarrow x+18=0\)
\(\Rightarrow x=-18\)
Vậy phương trình có nghiệm là x = -18
a/ ĐKXĐ: \(x\ne\left\{8;9;10;11\right\}\)
\(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
\(\Leftrightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
\(\Leftrightarrow x\left(\frac{1}{x-8}-\frac{1}{x-9}+\frac{1}{x-11}-\frac{1}{x-10}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-9}-\frac{1}{x-8}=\frac{1}{x-11}-\frac{1}{x-10}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{1}{\left(x-9\right)\left(x-8\right)}=\frac{1}{\left(x-11\right)\left(x-10\right)}\)
\(\Leftrightarrow x^2-17x+72=x^2-21x+110\)
\(\Rightarrow x=\frac{19}{2}\)
b/ ĐK: \(x\ne\left\{3;4;5;6\right\}\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-3}-\frac{1}{x-5}=\frac{1}{x-4}-\frac{1}{x-6}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\frac{-2}{\left(x-3\right)\left(x-5\right)}=\frac{-2}{\left(x-4\right)\left(x-6\right)}\)
\(\Leftrightarrow x^2-8x+15=x^2-10x+24\)
\(\Rightarrow x=\frac{9}{2}\)
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
\(-537x^2+5054x=-541x^2+5092x\)
\(-537x^2+5054x+541x^2-5092x=0\)
\(4x^2-38x=0\)
\(x\left(2x-19\right)=0\)
\(\orbr{\begin{cases}x=0\\2x=19\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{19}{2}\end{cases}}\)
ĐKXĐ \(x\ne8;x\ne11;x\ne9;x\ne10\)
\(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
\(\Leftrightarrow\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}=\dfrac{x}{x-9}+\dfrac{x}{x-10}\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
1) x=0
2) \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
\(\Leftrightarrow\dfrac{x-11+x-8}{\left(x-8\right)\left(x-11\right)}-\dfrac{x-10+x-9}{\left(x-9\right)\left(x-10\right)}=0\)
\(\Leftrightarrow\dfrac{2x-19}{\left(x-8\right)\left(x-11\right)}=\dfrac{2x-19}{\left(x-9\right)\left(x-10\right)}\)
\(\Leftrightarrow\dfrac{2x-19}{x^2-19x+88}=\dfrac{2x-19}{x^2-19x+90}\)
do \(x^2-19x+88\ne x^2-19x+90\)
\(\Rightarrow2x-19=0\)
=> x=\(\dfrac{19}{2}\)
Vậy x=\(0\); x=\(\dfrac{19}{2}\)
Tik
\(\frac{x-7}{x-8}-\frac{x-8}{x-9}=\frac{x-10}{x-11}-\frac{x-11}{x-12}\)
\(\frac{x-7}{x-8}-\frac{x-8}{x-9}-\frac{x-10}{x-11}+\frac{x-11}{x-12}=0\)
Rồi còn lại làm típ
\(\dfrac{8}{x}-8+\dfrac{11}{x}-11=\dfrac{9}{x}-9+\dfrac{10}{x}-10\)\(\Leftrightarrow\dfrac{8}{x}+\dfrac{11}{x}-\dfrac{9}{x}-\dfrac{10}{x}=8+11-9-10\)
\(\Leftrightarrow\dfrac{8+11-9-10}{x}=0\)
\(\Leftrightarrow\dfrac{0}{x}=0\)
\(\Leftrightarrow x=0\)
S=\(\left\{0\right\}\)
bước đầu là ntn mình k hiểu lắm