Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)
=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)
=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)
=>x=0
b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)
=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)
=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)
Đến đây thì bạn giải giống câu a
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
2.
\(\dfrac{x+5}{2006}+\dfrac{x+4}{2007}+\dfrac{x+3}{2008}< \dfrac{x+9}{2002}+\dfrac{x+10}{2001}+\dfrac{x+11}{2000}\\ \Leftrightarrow\dfrac{x+5}{2006}+1+\dfrac{x+4}{2007}+1+\dfrac{x+3}{2008}+1< \dfrac{x+9}{2002}+1+\dfrac{x+10}{2001}+1+\dfrac{x+11}{2000}+1\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}< \dfrac{x+2011}{2002}+\dfrac{x+2011}{2001}+\dfrac{x+2011}{2000}\\ \Leftrightarrow\dfrac{x+2011}{2006}+\dfrac{x+2011}{2007}+\dfrac{x+2011}{2008}-\dfrac{x+2011}{2002}-\dfrac{x+2011}{2001}-\dfrac{x+2011}{2000}< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2002}-\dfrac{1}{2001}-\dfrac{1}{2000}\right)< 0\\ \Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
Vì \(\left\{{}\begin{matrix}\dfrac{1}{2006}< \dfrac{1}{2002}\\\dfrac{1}{2007}< \dfrac{1}{2001}\\\dfrac{1}{2008}< \dfrac{1}{2000}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2006}-\dfrac{1}{2002}< 0\\\dfrac{1}{2007}-\dfrac{1}{2001}< 0\\\dfrac{1}{2008}-\dfrac{1}{2000}< 0\end{matrix}\right.\Rightarrow\left(\dfrac{1}{2006}-\dfrac{1}{2002}+\dfrac{1}{2007}-\dfrac{1}{2001}+\dfrac{1}{2008}-\dfrac{1}{2000}\right)< 0\)
\(\Rightarrow x>0\)
Vậy \(x>0\)
\(\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne9;11;13;14\\\left(\dfrac{2}{x-14}-\dfrac{2}{3}\right)-\left(\dfrac{5}{x-13}-\dfrac{5}{4}\right)=\left(\dfrac{2}{x-9}-\dfrac{1}{4}\right)-\left(\dfrac{5}{x-11}-\dfrac{5}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow2\left(\dfrac{x-17}{3\left(x-14\right)}\right)-5\left(\dfrac{x-17}{4\left(x-13\right)}\right)=\left(\dfrac{x-17}{4\left(x-9\right)}\right)-5\left(\dfrac{x-17}{6\left(x-11\right)}\right)\)
\(\left(x-17\right)\left[\dfrac{2}{3\left(x-14\right)}-\dfrac{5}{4\left(x-13\right)}+\dfrac{5}{6\left(x-11\right)}-\dfrac{1}{4\left(x-9\right)}\right]=0\)
[..] vô nghiệm
x=17
Lời giải:
Bài của bạn ngonhuminh cơ bản không đúng do không có cơ sở khẳng định biểu thức trong ngoặc vuông vô nghiệm.
ĐKXĐ: \(x\neq \left\{9;11;13;14\right\}\)
\(\frac{2}{x-14}-\frac{5}{x-13}=\frac{2}{x-9}-\frac{5}{x-11}\)
\(\Leftrightarrow 2\left(\frac{1}{x-14}-\frac{1}{x-9}\right)=5\left(\frac{1}{x-13}-\frac{1}{x-11}\right)\)
\(\Leftrightarrow \frac{10}{(x-14)(x-9)}=\frac{10}{(x-13)(x-11)}\)
\(\Rightarrow (x-14)(x-9)=(x-13)(x-11)\)
\(\Leftrightarrow x^2-23x+126=x^2-24x+143\)
\(\Leftrightarrow x-17=0\Leftrightarrow x=17\)
Thử lại thấy thỏa mãn.
Vậy \(x=17\)
`(x-2003)/16 +(x-1997)/11 +(x-1992)/9 +(x-1991)/7=10`
`<=>((x-2003)/16-1)+((x-1997)/11-2)+((x-1992)/9-3)+((x-1991)/7-4)=0`
`<=>(x-2019)/16+ (x-2019)/11 +(x-2019)/9+(x-2019)/7 =0`
`<=> (x-2019)(1/16+1/11+1/9+1/7)=0`
<=> x-2019=0`
`<=> x=2019`
(x-5)(x-9)>0\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\Leftrightarrow x>5\\x-9>0\Leftrightarrow x>9\end{matrix}\right.\)
Vậy x>9 thì (x-5)(x-9)>0
\(\frac{2}{x-14}\) -\(\frac{5}{x-13}\)= \(\frac{2}{x-9}\)- \(\frac{5}{x-11}\)
ĐKXĐ : x\(\ne\)14;13;9;11
(=) \(\frac{2}{x-14}\)- \(\frac{5}{x-13}\)= \(\frac{2}{x-9}\)-\(\frac{5}{x-11}\)
(=) \(\frac{2}{x-14}\)-\(\frac{2}{x-9}\)=\(\frac{5}{x-13}\)-\(\frac{5}{x-11}\)
(=) \(\frac{2\left(x-9\right)}{\left(x-14\right)\left(x-9\right)}\)-\(\frac{2\left(x-14\right)}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{5\left(x-11\right)}{\left(x-13\right)\left(x-11\right)}\)-\(\frac{5\left(x-13\right)}{\left(x-13\right)\left(x-11\right)}\)
(=) \(\frac{2x-18-2x+28}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{5x-55-5x+65}{\left(x-13\right)\left(x-11\right)}\)
(=) \(\frac{10}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{10}{\left(x-13\right)\left(x-11\right)}\)
=) ( x - 14 ) ( x - 9 ) = ( x - 13 ) ( x - 11 )
(=) x2 - 9x - 14x + 126 = x2 - 13x - 11x + 143
(=) x - 17 = 0
(=) x = 17
Vậy phương trình có nghiệm là: x = 17
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
<=>\(\dfrac{\left(x-3\right)9}{99}+\dfrac{\left(x+1\right)33}{99}=\dfrac{\left(x+7\right)11}{99}-\dfrac{99}{99}\)
=>(x-3)9 + (x+1)33 = (x+7)11 - 99
=>9x-27+33x+33=11x+77-99
=>9x+33x-11x=27-33+77-99
=>31x=-28
=>x=\(\dfrac{-28}{31}\)
\(\dfrac{x-3}{11}+\dfrac{x+1}{3}=\dfrac{x+7}{9}-1\)
\(\Leftrightarrow\dfrac{9\left(x-3\right)+33\left(x+1\right)}{99}=\dfrac{11\left(x+7\right)-99}{99}\)
\(\Leftrightarrow9\left(x-3\right)+33\left(x+1\right)=11\left(x+7\right)-99\)
\(\Leftrightarrow9x-27+33x+33=11x+77-99\)
\(\Leftrightarrow9x+33x-11x=77-99+27-33\)
\(\Leftrightarrow31x=-28\)
\(\Leftrightarrow x=-\dfrac{28}{31}\)
Vậy phương trình có nghiệm duy nhất \(x=-\dfrac{28}{31}\)
ĐKXĐ \(x\ne8;x\ne11;x\ne9;x\ne10\)
\(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
\(\Leftrightarrow\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}=\dfrac{x}{x-9}+\dfrac{x}{x-10}\)
\(\Leftrightarrow\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
1) x=0
2) \(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}=0\)
\(\Leftrightarrow\dfrac{x-11+x-8}{\left(x-8\right)\left(x-11\right)}-\dfrac{x-10+x-9}{\left(x-9\right)\left(x-10\right)}=0\)
\(\Leftrightarrow\dfrac{2x-19}{\left(x-8\right)\left(x-11\right)}=\dfrac{2x-19}{\left(x-9\right)\left(x-10\right)}\)
\(\Leftrightarrow\dfrac{2x-19}{x^2-19x+88}=\dfrac{2x-19}{x^2-19x+90}\)
do \(x^2-19x+88\ne x^2-19x+90\)
\(\Rightarrow2x-19=0\)
=> x=\(\dfrac{19}{2}\)
Vậy x=\(0\); x=\(\dfrac{19}{2}\)
Tik