Cho A=\(\frac{3\sqrt{x}}{2x}\)
So sánh \(\sqrt{A}\)và A2 biết x2-2x-5\(\sqrt{x}\)+12=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
\(ĐKXĐ:x\ge0;x\ne1;0\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)
\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)
a/d bđt cauchy
\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)
\(A\ge4+2=6\)
\(< =>A>5\)
dấu "=" xảy ra khi x=1
a: Ta có: \(D=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
b: Để D=12 thì D-12=0
\(\Leftrightarrow\sqrt{x}-4=0\)
hay x=16
a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}:\left(\dfrac{-\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x\sqrt{x}+x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(1-\sqrt{x}\right)}:\dfrac{-2x^2+x\sqrt{x}-2\sqrt{x}+1+2x^2-x\sqrt{x}-2x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-2x-\sqrt{x}+1}\)
\(=\dfrac{-\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{-\sqrt{x}\left(2x+\sqrt{x}-1\right)}\)
\(=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
b: Thay \(x=17-12\sqrt{2}=\left(3-2\sqrt{2}\right)^2\) vào A, ta được:
\(A=\dfrac{17-12\sqrt{2}-\sqrt{2}+1+1}{3-2\sqrt{2}}=\dfrac{19-13\sqrt{2}}{3-2\sqrt{2}}=5-\sqrt{2}\)
a/ x <hoac= -23/4
b/ x=2
a/ có 2xcăn6 > 2x2=4
=> 2 căn 6 > 3+1
<=> 2 căn 6 - 3 >1
b/ có 3 căn 2 > 3
=> 3 căn 2 - 9 > -6
=> 6 > 9- 3 căn 2
dĩ nhiên là
\(\sqrt{A}\)< A2