Cho tam giác ABC lấy điểm M là trung điểm của BC. Chứng minh: Nếu góc A = 90 độ thì AM = 1/2 . BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)nối AM lại ta có đường trung tuyến AM
mà AM=1/2.BC =>\(\Delta ABC\perp\)tại A=>góc A=90o
Còn câu b,c bạn tự làm nha chế mình ko bt kaka
Các độ dài M1, M2, M3 khác nhau, chúng không thể cùng bằng \(\frac{1}{2}\)BC nhé!
a) Ke AD sao cho goc DAB =goc ACD => goc DAB =goc BAD ( cung phu voi DAC)
=> tam giac ABD can tai D => AD=BD
=>Tam giac ADC can tai D => AD=DC
=>DB=DC=DA => D trung voi M
=> AM =BC/2
b) Nguoc lai :
Neu AM =BC/2 => AM =MB =MC
=> ABM can tai M ; ACM can tai M
=> BAM + CAM = (180- AMB)/2 +(180-AMC)/2 = (360 -(AMB+AMC))/2 =(360-180)/2=180/2=90
=>BAC=90
=> A=90
nếu MA=1/2BC
=> MA=MC=MB ( M là tđ của BC)
=> tam giác AMC và tam giác AMB cân tại M
=> góc A1=C và A2=B
tam giác ABC có góc B+C+A1+A2=180 độ
=> A2+A1+A1+A2=180 độ
=> 2A1+2A2=180 do
=> 2(A1+A2)=180 độ
=> góc BAC=90 độ
vậy nếu MA=1/2BC thì góc A=90 độ
Theo cách giải lớp 8 :v
Lấy D đối xứng với A qua M . Ta có :
\(\left\{{}\begin{matrix}MA=MD\\MB=MC\end{matrix}\right.\Rightarrow ABCD\) là hình bình hành .
Mà có \(\widehat{A}=90^0\) nên ABCD là hình chữ nhật
\(\Rightarrow AD=BC\) ( Hình chữ nhật có 2 đường chéo bằng nhau )
Mặt khác \(AM=\dfrac{1}{2}AD\Rightarrow AM=\dfrac{1}{2}BC\left(đpcm\right)\)
ABC vuông tại A thì ABC nội tiếp đường tròn đường kính BC
M là trung điểm BC => AM=BM=CM=R(bán kính đường tròn)