Cho tam giác ABC . Lấy điểm M của BC . Chứng minh:
Nếu góc A = 90 độ thì AM = 1/2 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo cách giải lớp 8 :v
Lấy D đối xứng với A qua M . Ta có :
\(\left\{{}\begin{matrix}MA=MD\\MB=MC\end{matrix}\right.\Rightarrow ABCD\) là hình bình hành .
Mà có \(\widehat{A}=90^0\) nên ABCD là hình chữ nhật
\(\Rightarrow AD=BC\) ( Hình chữ nhật có 2 đường chéo bằng nhau )
Mặt khác \(AM=\dfrac{1}{2}AD\Rightarrow AM=\dfrac{1}{2}BC\left(đpcm\right)\)
ABC vuông tại A thì ABC nội tiếp đường tròn đường kính BC
M là trung điểm BC => AM=BM=CM=R(bán kính đường tròn)
a)nối AM lại ta có đường trung tuyến AM
mà AM=1/2.BC =>\(\Delta ABC\perp\)tại A=>góc A=90o
Còn câu b,c bạn tự làm nha chế mình ko bt kaka
Dễ dàng chỉ ra được các kết luận trên nhờ quan hệ giữa góc và cạnh đối diện trong tam giác.
Ta có :
a) AM = BC/2 = BM
Vậy tam giác ABM cân tại M. Vậy thì \(\widehat{B}=\widehat{A_1}\)
Tương tự \(\widehat{B}=\widehat{A_2}\Rightarrow\widehat{A}=\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)
Mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}=90^o\)
b) AM > BM thì \(\widehat{B}>\widehat{A_1};\widehat{C}>\widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}>\widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}< 90^o\)
c) AM < BM thì \(\widehat{B}< \widehat{A_1};\widehat{C}< \widehat{A_2}\),
\(\Rightarrow\widehat{B}+\widehat{C}< \widehat{A}\) , mà \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{A}>90^o\)
Các độ dài M1, M2, M3 khác nhau, chúng không thể cùng bằng \(\frac{1}{2}\)BC nhé!