Cho chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Hình chiếu của S trên đáy là giao điểm I của AC và BD. Mặt bên SAB tạo với đáy một góc \(60^o\). Biết AB=BC=a, AD=3a. Tính \(d_{\left(D,\left(SAB\right)\right)}\)=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là hình chiếu của I lên AB
Suy ra \(\widehat{SKI=60^0}\)
Mà \(\frac{BI}{ID}=\frac{BC}{AD}=\frac{a}{3a}=\frac{1}{2}\)\(\Rightarrow\frac{BI}{BI+ID}=\frac{1}{4}\)\(\Rightarrow\frac{BI}{BD}=\frac{1}{4}\)
Suy ra \(\frac{KI}{DA}=\frac{1}{4}\)\(\Rightarrow KI=\frac{3a}{4}\Rightarrow SI=\frac{3a\sqrt{3}}{4}\)
Do \(IK\) \\ \(AD\Rightarrow\frac{KI}{AD}=\frac{BI}{BD}\)
\(V_{A.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{1}{3}.\frac{3a\sqrt{3}}{4}.\frac{1}{2}\left(a+3a\right)a=\frac{a^3\sqrt{3}}{2}\)
Gọi H là hình chiếu của I trên SK. Ta có \(\begin{cases}AB\perp IK\\AB\perp SI\end{cases}\)\(\Rightarrow AB\perp IH\)
Từ đó suy ra \(IK\perp\left(SAB\right)\Rightarrow d\left(I,\left(SAB\right)\right)=IK\)
Mà do \(DB=4IB\Rightarrow\left(D,\left(SAB\right)\right)=4d\left(I,\left(SAB\right)\right)=4IH\)
Lại có \(\frac{1}{IH^2}=\frac{1}{IS^2}+\frac{1}{IK^2}=\frac{16}{27a^2}+\frac{16}{9a^2}=\frac{64}{27a^2}\Leftrightarrow IH=\frac{3a\sqrt{3}}{8}\)
Vậy \(d\left(D,\left(SAB\right)\right)=\frac{3a\sqrt{3}}{2}\)
Đáp án D
Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:
(SKH) ⊥ BD => Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600
Lại có:
Do đó
Vậy
Chọn D
Ta có
Gọi H là trung điểm AB thì ,
kẻ , ta có là góc giữa (SBD) và (ABCD), do đó = 600
Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:
Đáp án C
Gọi M là trung điểm cuả AD. Ta có: B C = A M = a và B C / / A M
nên tứ giác ABCM là hình bình hành
⇒ C M = A B = a ⇒ Δ C D M đều. Gọi K là hình chiếu của C lên AD.
Ta có: C K = a 2 − a 2 2 = a 3 2 .
Diện tích hình thang ABCD là: S = a + 2 a . a 3 2 2 = 3 a 2 3 4
+) Lại có:
H D = 3 2 .2 a = 3 a 2 ⇒ S H = 3 a 2
Thể tích khối chóp S.ABCD là:
V = 1 3 S H . S A B C D = 1 3 . 3 a 2 . 3 a 2 3 4 = 3 a 3 3 8 .
Đáp ván A
Vì I là hình chiếu của S trên (ABCD)
⇒ ( S C → , ( A B C D ) ) = S C I ⏞
⇒ S I = I C . tan 60 ° = a 5 2 . tan 60 ° = a 15 2
Vậy
V S . I B C = V S . A B C D - V S . A I B - V S . I C D = 1 3 . a 15 2 a + 2 a 2 . a - 1 2 . a 2 . 2 a - 1 2 . a 2 . a = a 3 15 8