K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2022

`1/[4xx5]+1/[5xx6]+1/[6xx7]+1/[7xx8]+1/[8xx9]+1/[9xx10]`

`=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10`

`=1/4-1/10`

`=10/40-4/40=6/40=3/20`

28 tháng 7 2023

   \(\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)

\(\dfrac{1}{5}-\dfrac{1}{6}\times\dfrac{1}{6}-\dfrac{1}{7}\times\dfrac{1}{7}-\dfrac{1}{8}\times\dfrac{1}{8}-\dfrac{1}{9}\times\dfrac{1}{9}-\dfrac{1}{10}\)

\(\dfrac{1}{5}-\dfrac{1}{10}\)  

\(\dfrac{1}{10}\)

14 tháng 11 2023

Bài tập cuối tuần 10

 

6 tháng 9 2023

\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}.\dfrac{10}{21}\)

\(=\dfrac{5}{21}\)

\(#Wendy.Dang\)

6 tháng 9 2023

\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)

\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)

\(=\dfrac{41}{84}\)

28 tháng 11 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{1}-\frac{1}{9}=\frac{8}{9}\)

28 tháng 11 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{1}-\frac{1}{9}\)

\(=\frac{8}{9}\)

20 tháng 3 2016

\(A=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}....\frac{1}{9x10}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{9}-\frac{1}{10}=\frac{9}{10}\)

20 tháng 3 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)

17 tháng 3 2021

=1/6-1/7+1/7-1/8+1/8-1/9+...+1/10-1/11

=1/6-1/11=5/66

 

6 tháng 7 2017

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

6 tháng 7 2017

Ta có:

\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{98.100}\)

\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{98.100}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)

Vậy giá trị của biểu thức là \(\frac{49}{200}\)

19 tháng 3 2017

\(\frac{1}{2x4}\)\(\frac{1}{4x6}\)+ ... + \(\frac{1}{98x100}\)\(\frac{1}{2}\)x(\(\frac{4-2}{2x4}\)+\(\frac{6-4}{4x6}\)+ ... + \(\frac{100-98}{98x100}\))

                                                        = \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{8}\)+ ... + \(\frac{1}{98}\)-\(\frac{1}{100}\))

                                                        = \(\frac{1}{2}\)x(\(\frac{1}{2}\)-\(\frac{1}{100}\)) = \(\frac{49}{200}\)

19 tháng 3 2017

kết quả là 49/50

16 tháng 3 2016

\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{96.98}+\frac{1}{98.100}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)