K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

bài 6;

21,23,25

5 tháng 11 2016

câu 1. Nhận xét:

Loại suy:

3193 không chia hết cho 2 suy ra 3193 ko chia hết cho 2k, 4k, 6k, 8k

Tương tự 3193 không chia hết cho 3k, 7k, 5k, 9k suy ra 3193 là số nguyên tố

Gọi số chia là ab => b chỉ có thể là 1, 3, 7, 9

Ngoài ra, ta nhận thấy thương của phép chia cũng phải là một số nguyên tố (kí hiệu là *)

Phép thử:

*b=9  =>  a=1, 2, 5, 7, 9  => thương ko là số tự nhiên 

*b=7  =>  a=1, 3, 4, 6, 9  => thương ko là số tự nhiên

*b=3  =>  a=1, 2, 4, 5, 7, 8  => thương ko là số tự nhiên

*b=1  =>  a=3, 4, 6, 1  =>  tìm được a=3

=>  Thương : 103 ;  số chia : 31

10 tháng 8 2014

a)

Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)

Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.

b)

350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)

15 tháng 7 2019

1. gọi 3 số tự nhiên liên tiếp đó là a-1, a, a+1

mà tích của 2 số sau lớn hơn tích của 2 số đầu => a(a+1)-2=a(a-1)

=> a^2+a-2=a^2-a

=>a^2 + a -2 - a^2 +a =0

=> 2a - 2 = 0

=> 2(a-1)=0

=> a-1 = 0

=> a=1

=> a-1 = 1-1 = 0

     a+1 = 1+1=2

vậy 3 số tự nhiên liên tiếp đó là 0,1,2

24 tháng 12 2015

đáp án sai là 4

24 tháng 12 2015

khẳng định sai là câu 4 .tích của 3 số tự nhiên liên tiếp chia hết cho 5

14 tháng 12 2020

1/

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2

+ Nếu \(n⋮3\) Bài toán đã được c/m

+ Nếu n chia 3 dư 1 => \(n+2⋮3\)

+ Nếu n chia 3 dư 2 => \(n+1⋮3\)

Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3

2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau

\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)

\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)

\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4

3/

a/ Gọi 3 số TN liên tiếp là n; n+1; n+2

\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)

b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3

\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)

Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4

26 tháng 6 2016

Tích 2 số tự nhiên đó là a(a+1)

Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0

Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2

Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm